|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Test nn.probability.distribution.Geometric.
- """
- import pytest
-
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import dtype
- from mindspore import Tensor
-
-
- def test_arguments():
- """
- Args passing during initialization.
- """
- g = msd.Geometric()
- assert isinstance(g, msd.Distribution)
- g = msd.Geometric([0.1, 0.3, 0.5, 0.9], dtype=dtype.int32)
- assert isinstance(g, msd.Distribution)
-
- def test_type():
- with pytest.raises(TypeError):
- msd.Geometric([0.1], dtype=dtype.float32)
-
- def test_name():
- with pytest.raises(TypeError):
- msd.Geometric([0.1], name=1.0)
-
- def test_seed():
- with pytest.raises(TypeError):
- msd.Geometric([0.1], seed='seed')
-
- def test_prob():
- """
- Invalid probability.
- """
- with pytest.raises(ValueError):
- msd.Geometric([-0.1], dtype=dtype.int32)
- with pytest.raises(ValueError):
- msd.Geometric([1.1], dtype=dtype.int32)
- with pytest.raises(ValueError):
- msd.Geometric([0.0], dtype=dtype.int32)
- with pytest.raises(ValueError):
- msd.Geometric([1.0], dtype=dtype.int32)
-
- class GeometricProb(nn.Cell):
- """
- Geometric distribution: initialize with probs.
- """
- def __init__(self):
- super(GeometricProb, self).__init__()
- self.g = msd.Geometric(0.5, dtype=dtype.int32)
-
- def construct(self, value):
- prob = self.g.prob(value)
- log_prob = self.g.log_prob(value)
- cdf = self.g.cdf(value)
- log_cdf = self.g.log_cdf(value)
- sf = self.g.survival_function(value)
- log_sf = self.g.log_survival(value)
- return prob + log_prob + cdf + log_cdf + sf + log_sf
-
- def test_geometric_prob():
- """
- Test probability functions: passing value through construct.
- """
- net = GeometricProb()
- value = Tensor([3, 4, 5, 6, 7], dtype=dtype.float32)
- ans = net(value)
- assert isinstance(ans, Tensor)
-
- class GeometricProb1(nn.Cell):
- """
- Geometric distribution: initialize without probs.
- """
- def __init__(self):
- super(GeometricProb1, self).__init__()
- self.g = msd.Geometric(dtype=dtype.int32)
-
- def construct(self, value, probs):
- prob = self.g.prob(value, probs)
- log_prob = self.g.log_prob(value, probs)
- cdf = self.g.cdf(value, probs)
- log_cdf = self.g.log_cdf(value, probs)
- sf = self.g.survival_function(value, probs)
- log_sf = self.g.log_survival(value, probs)
- return prob + log_prob + cdf + log_cdf + sf + log_sf
-
- def test_geometric_prob1():
- """
- Test probability functions: passing value/probs through construct.
- """
- net = GeometricProb1()
- value = Tensor([3, 4, 5, 6, 7], dtype=dtype.float32)
- probs = Tensor([0.5], dtype=dtype.float32)
- ans = net(value, probs)
- assert isinstance(ans, Tensor)
-
-
- class GeometricKl(nn.Cell):
- """
- Test class: kl_loss between Geometric distributions.
- """
- def __init__(self):
- super(GeometricKl, self).__init__()
- self.g1 = msd.Geometric(0.7, dtype=dtype.int32)
- self.g2 = msd.Geometric(dtype=dtype.int32)
-
- def construct(self, probs_b, probs_a):
- kl1 = self.g1.kl_loss('Geometric', probs_b)
- kl2 = self.g2.kl_loss('Geometric', probs_b, probs_a)
- return kl1 + kl2
-
- def test_kl():
- """
- Test kl_loss function.
- """
- ber_net = GeometricKl()
- probs_b = Tensor([0.3], dtype=dtype.float32)
- probs_a = Tensor([0.7], dtype=dtype.float32)
- ans = ber_net(probs_b, probs_a)
- assert isinstance(ans, Tensor)
-
- class GeometricCrossEntropy(nn.Cell):
- """
- Test class: cross_entropy of Geometric distribution.
- """
- def __init__(self):
- super(GeometricCrossEntropy, self).__init__()
- self.g1 = msd.Geometric(0.3, dtype=dtype.int32)
- self.g2 = msd.Geometric(dtype=dtype.int32)
-
- def construct(self, probs_b, probs_a):
- h1 = self.g1.cross_entropy('Geometric', probs_b)
- h2 = self.g2.cross_entropy('Geometric', probs_b, probs_a)
- return h1 + h2
-
- def test_cross_entropy():
- """
- Test cross_entropy between Geometric distributions.
- """
- net = GeometricCrossEntropy()
- probs_b = Tensor([0.3], dtype=dtype.float32)
- probs_a = Tensor([0.7], dtype=dtype.float32)
- ans = net(probs_b, probs_a)
- assert isinstance(ans, Tensor)
-
- class GeometricBasics(nn.Cell):
- """
- Test class: basic mean/sd/mode/entropy function.
- """
- def __init__(self):
- super(GeometricBasics, self).__init__()
- self.g = msd.Geometric([0.3, 0.5], dtype=dtype.int32)
-
- def construct(self):
- mean = self.g.mean()
- sd = self.g.sd()
- var = self.g.var()
- mode = self.g.mode()
- entropy = self.g.entropy()
- return mean + sd + var + mode + entropy
-
- def test_bascis():
- """
- Test mean/sd/mode/entropy functionality of Geometric distribution.
- """
- net = GeometricBasics()
- ans = net()
- assert isinstance(ans, Tensor)
-
-
- class GeoConstruct(nn.Cell):
- """
- Bernoulli distribution: going through construct.
- """
- def __init__(self):
- super(GeoConstruct, self).__init__()
- self.g = msd.Geometric(0.5, dtype=dtype.int32)
- self.g1 = msd.Geometric(dtype=dtype.int32)
-
- def construct(self, value, probs):
- prob = self.g('prob', value)
- prob1 = self.g('prob', value, probs)
- prob2 = self.g1('prob', value, probs)
- return prob + prob1 + prob2
-
- def test_geo_construct():
- """
- Test probability function going through construct.
- """
- net = GeoConstruct()
- value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
- probs = Tensor([0.5], dtype=dtype.float32)
- ans = net(value, probs)
- assert isinstance(ans, Tensor)
|