|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Test nn.probability.distribution.Exponential.
- """
- import pytest
-
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import dtype
- from mindspore import Tensor
-
-
- def test_arguments():
- """
- Args passing during initialization.
- """
- e = msd.Exponential()
- assert isinstance(e, msd.Distribution)
- e = msd.Exponential([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
- assert isinstance(e, msd.Distribution)
-
- def test_type():
- with pytest.raises(TypeError):
- msd.Exponential([0.1], dtype=dtype.int32)
-
- def test_name():
- with pytest.raises(TypeError):
- msd.Exponential([0.1], name=1.0)
-
- def test_seed():
- with pytest.raises(TypeError):
- msd.Exponential([0.1], seed='seed')
-
- def test_rate():
- """
- Invalid rate.
- """
- with pytest.raises(ValueError):
- msd.Exponential([-0.1], dtype=dtype.float32)
- with pytest.raises(ValueError):
- msd.Exponential([0.0], dtype=dtype.float32)
-
- class ExponentialProb(nn.Cell):
- """
- Exponential distribution: initialize with rate.
- """
- def __init__(self):
- super(ExponentialProb, self).__init__()
- self.e = msd.Exponential(0.5, dtype=dtype.float32)
-
- def construct(self, value):
- prob = self.e.prob(value)
- log_prob = self.e.log_prob(value)
- cdf = self.e.cdf(value)
- log_cdf = self.e.log_cdf(value)
- sf = self.e.survival_function(value)
- log_sf = self.e.log_survival(value)
- return prob + log_prob + cdf + log_cdf + sf + log_sf
-
- def test_exponential_prob():
- """
- Test probability functions: passing value through construct.
- """
- net = ExponentialProb()
- value = Tensor([0.2, 0.3, 5.0, 2, 3.9], dtype=dtype.float32)
- ans = net(value)
- assert isinstance(ans, Tensor)
-
- class ExponentialProb1(nn.Cell):
- """
- Exponential distribution: initialize without rate.
- """
- def __init__(self):
- super(ExponentialProb1, self).__init__()
- self.e = msd.Exponential(dtype=dtype.float32)
-
- def construct(self, value, rate):
- prob = self.e.prob(value, rate)
- log_prob = self.e.log_prob(value, rate)
- cdf = self.e.cdf(value, rate)
- log_cdf = self.e.log_cdf(value, rate)
- sf = self.e.survival_function(value, rate)
- log_sf = self.e.log_survival(value, rate)
- return prob + log_prob + cdf + log_cdf + sf + log_sf
-
- def test_exponential_prob1():
- """
- Test probability functions: passing value/rate through construct.
- """
- net = ExponentialProb1()
- value = Tensor([0.2, 0.9, 1, 2, 3], dtype=dtype.float32)
- rate = Tensor([0.5], dtype=dtype.float32)
- ans = net(value, rate)
- assert isinstance(ans, Tensor)
-
- class ExponentialKl(nn.Cell):
- """
- Test class: kl_loss between Exponential distributions.
- """
- def __init__(self):
- super(ExponentialKl, self).__init__()
- self.e1 = msd.Exponential(0.7, dtype=dtype.float32)
- self.e2 = msd.Exponential(dtype=dtype.float32)
-
- def construct(self, rate_b, rate_a):
- kl1 = self.e1.kl_loss('Exponential', rate_b)
- kl2 = self.e2.kl_loss('Exponential', rate_b, rate_a)
- return kl1 + kl2
-
- def test_kl():
- """
- Test kl_loss function.
- """
- net = ExponentialKl()
- rate_b = Tensor([0.3], dtype=dtype.float32)
- rate_a = Tensor([0.7], dtype=dtype.float32)
- ans = net(rate_b, rate_a)
- assert isinstance(ans, Tensor)
-
- class ExponentialCrossEntropy(nn.Cell):
- """
- Test class: cross_entropy of Exponential distribution.
- """
- def __init__(self):
- super(ExponentialCrossEntropy, self).__init__()
- self.e1 = msd.Exponential(0.3, dtype=dtype.float32)
- self.e2 = msd.Exponential(dtype=dtype.float32)
-
- def construct(self, rate_b, rate_a):
- h1 = self.e1.cross_entropy('Exponential', rate_b)
- h2 = self.e2.cross_entropy('Exponential', rate_b, rate_a)
- return h1 + h2
-
- def test_cross_entropy():
- """
- Test cross_entropy between Exponential distributions.
- """
- net = ExponentialCrossEntropy()
- rate_b = Tensor([0.3], dtype=dtype.float32)
- rate_a = Tensor([0.7], dtype=dtype.float32)
- ans = net(rate_b, rate_a)
- assert isinstance(ans, Tensor)
-
- class ExponentialBasics(nn.Cell):
- """
- Test class: basic mean/sd/mode/entropy function.
- """
- def __init__(self):
- super(ExponentialBasics, self).__init__()
- self.e = msd.Exponential([0.3, 0.5], dtype=dtype.float32)
-
- def construct(self):
- mean = self.e.mean()
- sd = self.e.sd()
- var = self.e.var()
- mode = self.e.mode()
- entropy = self.e.entropy()
- return mean + sd + var + mode + entropy
-
- def test_bascis():
- """
- Test mean/sd/var/mode/entropy functionality of Exponential distribution.
- """
- net = ExponentialBasics()
- ans = net()
- assert isinstance(ans, Tensor)
-
-
- class ExpConstruct(nn.Cell):
- """
- Exponential distribution: going through construct.
- """
- def __init__(self):
- super(ExpConstruct, self).__init__()
- self.e = msd.Exponential(0.5, dtype=dtype.float32)
- self.e1 = msd.Exponential(dtype=dtype.float32)
-
- def construct(self, value, rate):
- prob = self.e('prob', value)
- prob1 = self.e('prob', value, rate)
- prob2 = self.e1('prob', value, rate)
- return prob + prob1 + prob2
-
- def test_exp_construct():
- """
- Test probability function going through construct.
- """
- net = ExpConstruct()
- value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
- probs = Tensor([0.5], dtype=dtype.float32)
- ans = net(value, probs)
- assert isinstance(ans, Tensor)
|