|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Test nn.probability.distribution.Bernoulli.
- """
- import pytest
-
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import dtype
- from mindspore import Tensor
-
- def test_arguments():
- """
- Args passing during initialization.
- """
- b = msd.Bernoulli()
- assert isinstance(b, msd.Distribution)
- b = msd.Bernoulli([0.1, 0.3, 0.5, 0.9], dtype=dtype.int32)
- assert isinstance(b, msd.Distribution)
-
- def test_type():
- with pytest.raises(TypeError):
- msd.Bernoulli([0.1], dtype=dtype.float32)
-
- def test_name():
- with pytest.raises(TypeError):
- msd.Bernoulli([0.1], name=1.0)
-
- def test_seed():
- with pytest.raises(TypeError):
- msd.Bernoulli([0.1], seed='seed')
-
- def test_prob():
- """
- Invalid probability.
- """
- with pytest.raises(ValueError):
- msd.Bernoulli([-0.1], dtype=dtype.int32)
- with pytest.raises(ValueError):
- msd.Bernoulli([1.1], dtype=dtype.int32)
- with pytest.raises(ValueError):
- msd.Bernoulli([0.0], dtype=dtype.int32)
- with pytest.raises(ValueError):
- msd.Bernoulli([1.0], dtype=dtype.int32)
-
- class BernoulliProb(nn.Cell):
- """
- Bernoulli distribution: initialize with probs.
- """
- def __init__(self):
- super(BernoulliProb, self).__init__()
- self.b = msd.Bernoulli(0.5, dtype=dtype.int32)
-
- def construct(self, value):
- prob = self.b.prob(value)
- log_prob = self.b.log_prob(value)
- cdf = self.b.cdf(value)
- log_cdf = self.b.log_cdf(value)
- sf = self.b.survival_function(value)
- log_sf = self.b.log_survival(value)
- return prob + log_prob + cdf + log_cdf + sf + log_sf
-
- def test_bernoulli_prob():
- """
- Test probability functions: passing value through construct.
- """
- net = BernoulliProb()
- value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
- ans = net(value)
- assert isinstance(ans, Tensor)
-
- class BernoulliProb1(nn.Cell):
- """
- Bernoulli distribution: initialize without probs.
- """
- def __init__(self):
- super(BernoulliProb1, self).__init__()
- self.b = msd.Bernoulli(dtype=dtype.int32)
-
- def construct(self, value, probs):
- prob = self.b.prob(value, probs)
- log_prob = self.b.log_prob(value, probs)
- cdf = self.b.cdf(value, probs)
- log_cdf = self.b.log_cdf(value, probs)
- sf = self.b.survival_function(value, probs)
- log_sf = self.b.log_survival(value, probs)
- return prob + log_prob + cdf + log_cdf + sf + log_sf
-
- def test_bernoulli_prob1():
- """
- Test probability functions: passing value/probs through construct.
- """
- net = BernoulliProb1()
- value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
- probs = Tensor([0.5], dtype=dtype.float32)
- ans = net(value, probs)
- assert isinstance(ans, Tensor)
-
- class BernoulliKl(nn.Cell):
- """
- Test class: kl_loss between Bernoulli distributions.
- """
- def __init__(self):
- super(BernoulliKl, self).__init__()
- self.b1 = msd.Bernoulli(0.7, dtype=dtype.int32)
- self.b2 = msd.Bernoulli(dtype=dtype.int32)
-
- def construct(self, probs_b, probs_a):
- kl1 = self.b1.kl_loss('Bernoulli', probs_b)
- kl2 = self.b2.kl_loss('Bernoulli', probs_b, probs_a)
- return kl1 + kl2
-
- def test_kl():
- """
- Test kl_loss function.
- """
- ber_net = BernoulliKl()
- probs_b = Tensor([0.3], dtype=dtype.float32)
- probs_a = Tensor([0.7], dtype=dtype.float32)
- ans = ber_net(probs_b, probs_a)
- assert isinstance(ans, Tensor)
-
- class BernoulliCrossEntropy(nn.Cell):
- """
- Test class: cross_entropy of Bernoulli distribution.
- """
- def __init__(self):
- super(BernoulliCrossEntropy, self).__init__()
- self.b1 = msd.Bernoulli(0.7, dtype=dtype.int32)
- self.b2 = msd.Bernoulli(dtype=dtype.int32)
-
- def construct(self, probs_b, probs_a):
- h1 = self.b1.cross_entropy('Bernoulli', probs_b)
- h2 = self.b2.cross_entropy('Bernoulli', probs_b, probs_a)
- return h1 + h2
-
- def test_cross_entropy():
- """
- Test cross_entropy between Bernoulli distributions.
- """
- net = BernoulliCrossEntropy()
- probs_b = Tensor([0.3], dtype=dtype.float32)
- probs_a = Tensor([0.7], dtype=dtype.float32)
- ans = net(probs_b, probs_a)
- assert isinstance(ans, Tensor)
-
- class BernoulliConstruct(nn.Cell):
- """
- Bernoulli distribution: going through construct.
- """
- def __init__(self):
- super(BernoulliConstruct, self).__init__()
- self.b = msd.Bernoulli(0.5, dtype=dtype.int32)
- self.b1 = msd.Bernoulli(dtype=dtype.int32)
-
- def construct(self, value, probs):
- prob = self.b('prob', value)
- prob1 = self.b('prob', value, probs)
- prob2 = self.b1('prob', value, probs)
- return prob + prob1 + prob2
-
- def test_bernoulli_construct():
- """
- Test probability function going through construct.
- """
- net = BernoulliConstruct()
- value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
- probs = Tensor([0.5], dtype=dtype.float32)
- ans = net(value, probs)
- assert isinstance(ans, Tensor)
-
- class BernoulliMean(nn.Cell):
- """
- Test class: basic mean/sd/var/mode/entropy function.
- """
- def __init__(self):
- super(BernoulliMean, self).__init__()
- self.b = msd.Bernoulli([0.3, 0.5], dtype=dtype.int32)
-
- def construct(self):
- mean = self.b.mean()
- return mean
-
- def test_mean():
- """
- Test mean/sd/var/mode/entropy functionality of Bernoulli distribution.
- """
- net = BernoulliMean()
- ans = net()
- assert isinstance(ans, Tensor)
-
- class BernoulliSd(nn.Cell):
- """
- Test class: basic mean/sd/var/mode/entropy function.
- """
- def __init__(self):
- super(BernoulliSd, self).__init__()
- self.b = msd.Bernoulli([0.3, 0.5], dtype=dtype.int32)
-
- def construct(self):
- sd = self.b.sd()
- return sd
-
- def test_sd():
- """
- Test mean/sd/var/mode/entropy functionality of Bernoulli distribution.
- """
- net = BernoulliSd()
- ans = net()
- assert isinstance(ans, Tensor)
-
- class BernoulliVar(nn.Cell):
- """
- Test class: basic mean/sd/var/mode/entropy function.
- """
- def __init__(self):
- super(BernoulliVar, self).__init__()
- self.b = msd.Bernoulli([0.3, 0.5], dtype=dtype.int32)
-
- def construct(self):
- var = self.b.var()
- return var
-
- def test_var():
- """
- Test mean/sd/var/mode/entropy functionality of Bernoulli distribution.
- """
- net = BernoulliVar()
- ans = net()
- assert isinstance(ans, Tensor)
-
- class BernoulliMode(nn.Cell):
- """
- Test class: basic mean/sd/var/mode/entropy function.
- """
- def __init__(self):
- super(BernoulliMode, self).__init__()
- self.b = msd.Bernoulli([0.3, 0.5], dtype=dtype.int32)
-
- def construct(self):
- mode = self.b.mode()
- return mode
-
- def test_mode():
- """
- Test mean/sd/var/mode/entropy functionality of Bernoulli distribution.
- """
- net = BernoulliMode()
- ans = net()
- assert isinstance(ans, Tensor)
-
- class BernoulliEntropy(nn.Cell):
- """
- Test class: basic mean/sd/var/mode/entropy function.
- """
- def __init__(self):
- super(BernoulliEntropy, self).__init__()
- self.b = msd.Bernoulli([0.3, 0.5], dtype=dtype.int32)
-
- def construct(self):
- entropy = self.b.entropy()
- return entropy
-
- def test_entropy():
- """
- Test mean/sd/var/mode/entropy functionality of Bernoulli distribution.
- """
- net = BernoulliEntropy()
- ans = net()
- assert isinstance(ans, Tensor)
|