|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test error"""
- import math
- import numpy as np
- import pytest
-
- from mindspore import Tensor
- from mindspore.nn.metrics import MAE, MSE
-
-
- def test_MAE():
- x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]))
- y = Tensor(np.array([0.1, 0.25, 0.7, 0.9]))
- error = MAE()
- error.clear()
- error.update(x, y)
- result = error.eval()
- assert math.isclose(result, 0.15 / 4)
-
-
- def test_input_MAE():
- x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]))
- y = Tensor(np.array([0.1, 0.25, 0.7, 0.9]))
- error = MAE()
- error.clear()
- with pytest.raises(ValueError):
- error.update(x, y, x)
-
-
- def test_zero_MAE():
- error = MAE()
- with pytest.raises(RuntimeError):
- error.eval()
-
-
- def test_MSE():
- x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]))
- y = Tensor(np.array([0.1, 0.25, 0.5, 0.9]))
- error = MSE()
- error.clear()
- error.update(x, y)
- result = error.eval()
- assert math.isclose(result, 0.0125 / 4)
-
-
- def test_input_MSE():
- x = Tensor(np.array([0.1, 0.2, 0.6, 0.9]))
- y = Tensor(np.array([0.1, 0.25, 0.7, 0.9]))
- error = MSE()
- error.clear()
- with pytest.raises(ValueError):
- error.update(x, y, x)
-
-
- def test_zero_MSE():
- error = MSE()
- with pytest.raises(RuntimeError):
- error.eval()
|