|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import mindspore as ms
- import mindspore.context as context
- from mindspore import Tensor, Parameter
- import mindspore.nn as nn
- from mindspore.common.api import _executor
- from mindspore.nn import TrainOneStepCell, Momentum
- from mindspore.ops import operations as P
-
-
- class Net(nn.Cell):
- def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None, strategy3=None):
- super(Net, self).__init__()
- self.split = P.Split(axis, out_nums).shard(strategy1)
- self.mul = P.Mul().shard(strategy2)
- self.matmul = P.MatMul(transpose_b=True).shard(strategy2)
- self.matmul2 = P.MatMul().shard(strategy3)
- self.weight = Parameter(mul_weight, "w1")
-
- def construct(self, x):
- out = self.mul(x, self.weight)
- out1, out2, out3 = self.split(out)
- out = self.matmul(out1, out2)
- out = self.matmul2(out, out3)
- return out
-
-
- class Net1(nn.Cell):
- def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None):
- super(Net1, self).__init__()
- self.split = P.Split(axis, out_nums).shard(strategy1)
- self.mul = P.Mul().shard(strategy2)
- self.weight = Parameter(mul_weight, "w1")
-
- def construct(self, x):
- out1, out2 = self.split(self.weight)
- out = self.mul(x, out1)
- out = self.mul(out, out2)
- return out
-
-
- class Net2(nn.Cell):
- def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None):
- super(Net2, self).__init__()
- self.split = P.Split(axis, out_nums).shard(strategy1)
- self.mul = P.Mul().shard(strategy2)
- self.weight = Parameter(mul_weight, "w1")
-
- def construct(self, x):
- out = self.mul(x, self.weight)
- out1, _ = self.split(out)
- return out1
-
-
- _w = Tensor(np.ones([48, 64]), dtype=ms.float32)
- _x = Tensor(np.ones([48, 64]), dtype=ms.float32)
-
- _w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32)
- _x1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32)
-
- _w2 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32)
-
- def compile_net(net):
- context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- _executor.compile(train_net, _x)
- context.reset_auto_parallel_context()
-
-
- def compile_net1(net):
- context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- _executor.compile(train_net, _x1)
- context.reset_auto_parallel_context()
-
-
- def test_split_parameter():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 4, 2),)
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net1(_w1, 0, 2, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_split_parameter_no_full_split():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 2, 2),)
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net1(_w1, 0, 2, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_split_tensor():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 8),)
- strategy2 = ((1, 8), (1, 8))
- strategy3 = ((1, 1), (1, 8))
- net = Net(_w, 0, 3, strategy1, strategy2, strategy3)
- compile_net(net)
-
-
- def test_split_output():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 4, 2),)
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net2(_w2, 0, 2, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_split_output_no_full_split():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 2, 2),)
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net2(_w2, 0, 2, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_split_no_strategy():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = None
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net2(_w2, 0, 2, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_split_auto_parallel():
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
- net = Net2(_w2, 0, 2)
- compile_net1(net)
|