|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test cases for Normal distribution"""
- import numpy as np
- from scipy import stats
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import Tensor
- from mindspore import dtype
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
-
- class Prob(nn.Cell):
- """
- Test class: probability of Normal distribution.
- """
- def __init__(self):
- super(Prob, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.n.prob(x_)
-
- def test_pdf():
- """
- Test pdf.
- """
- norm_benchmark = stats.norm(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_pdf = norm_benchmark.pdf([1.0, 2.0]).astype(np.float32)
- pdf = Prob()
- output = pdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
-
- class LogProb(nn.Cell):
- """
- Test class: log probability of Normal distribution.
- """
- def __init__(self):
- super(LogProb, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.n.log_prob(x_)
-
- def test_log_likelihood():
- """
- Test log_pdf.
- """
- norm_benchmark = stats.norm(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_logpdf = norm_benchmark.logpdf([1.0, 2.0]).astype(np.float32)
- logprob = LogProb()
- output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
-
-
- class KL(nn.Cell):
- """
- Test class: kl_loss of Normal distribution.
- """
- def __init__(self):
- super(KL, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
-
- def construct(self, x_, y_):
- return self.n.kl_loss('Normal', x_, y_)
-
-
- def test_kl_loss():
- """
- Test kl_loss.
- """
- mean_a = np.array([3.0]).astype(np.float32)
- sd_a = np.array([4.0]).astype(np.float32)
-
- mean_b = np.array([1.0]).astype(np.float32)
- sd_b = np.array([1.0]).astype(np.float32)
-
- diff_log_scale = np.log(sd_a) - np.log(sd_b)
- squared_diff = np.square(mean_a / sd_b - mean_b / sd_b)
- expect_kl_loss = 0.5 * squared_diff + 0.5 * np.expm1(2 * diff_log_scale) - diff_log_scale
-
- kl_loss = KL()
- mean = Tensor(mean_b, dtype=dtype.float32)
- sd = Tensor(sd_b, dtype=dtype.float32)
- output = kl_loss(mean, sd)
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
-
- class Basics(nn.Cell):
- """
- Test class: mean/sd/mode of Normal distribution.
- """
- def __init__(self):
- super(Basics, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
-
- def construct(self):
- return self.n.mean(), self.n.sd(), self.n.mode()
-
- def test_basics():
- """
- Test mean/standard deviation/mode.
- """
- basics = Basics()
- mean, sd, mode = basics()
- expect_mean = [3.0, 3.0]
- expect_sd = [2.0, 4.0]
- tol = 1e-6
- assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
- assert (np.abs(mode.asnumpy() - expect_mean) < tol).all()
- assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
-
- class Sampling(nn.Cell):
- """
- Test class: sample of Normal distribution.
- """
- def __init__(self, shape, seed=0):
- super(Sampling, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
- self.shape = shape
-
- def construct(self, mean=None, sd=None):
- return self.n.sample(self.shape, mean, sd)
-
- def test_sample():
- """
- Test sample.
- """
- shape = (2, 3)
- seed = 10
- mean = Tensor([2.0], dtype=dtype.float32)
- sd = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
- sample = Sampling(shape, seed=seed)
- output = sample(mean, sd)
- assert output.shape == (2, 3, 3)
-
- class CDF(nn.Cell):
- """
- Test class: cdf of Normal distribution.
- """
- def __init__(self):
- super(CDF, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.n.cdf(x_)
-
-
- def test_cdf():
- """
- Test cdf.
- """
- norm_benchmark = stats.norm(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_cdf = norm_benchmark.cdf([1.0, 2.0]).astype(np.float32)
- cdf = CDF()
- output = cdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
-
- class LogCDF(nn.Cell):
- """
- Test class: log_cdf of Mormal distribution.
- """
- def __init__(self):
- super(LogCDF, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.n.log_cdf(x_)
-
- def test_log_cdf():
- """
- Test log cdf.
- """
- norm_benchmark = stats.norm(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_logcdf = norm_benchmark.logcdf([1.0, 2.0]).astype(np.float32)
- logcdf = LogCDF()
- output = logcdf(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 5e-5
- assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
-
- class SF(nn.Cell):
- """
- Test class: survival function of Normal distribution.
- """
- def __init__(self):
- super(SF, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.n.survival_function(x_)
-
- def test_survival():
- """
- Test log_survival.
- """
- norm_benchmark = stats.norm(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_survival = norm_benchmark.sf([1.0, 2.0]).astype(np.float32)
- survival_function = SF()
- output = survival_function(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
-
- class LogSF(nn.Cell):
- """
- Test class: log survival function of Normal distribution.
- """
- def __init__(self):
- super(LogSF, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self, x_):
- return self.n.log_survival(x_)
-
- def test_log_survival():
- """
- Test log_survival.
- """
- norm_benchmark = stats.norm(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_log_survival = norm_benchmark.logsf([1.0, 2.0]).astype(np.float32)
- log_survival = LogSF()
- output = log_survival(Tensor([1.0, 2.0], dtype=dtype.float32))
- tol = 2e-5
- assert (np.abs(output.asnumpy() - expect_log_survival) < tol).all()
-
- class EntropyH(nn.Cell):
- """
- Test class: entropy of Normal distribution.
- """
- def __init__(self):
- super(EntropyH, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
-
- def construct(self):
- return self.n.entropy()
-
- def test_entropy():
- """
- Test entropy.
- """
- norm_benchmark = stats.norm(np.array([3.0]), np.array([[2.0], [4.0]]))
- expect_entropy = norm_benchmark.entropy().astype(np.float32)
- entropy = EntropyH()
- output = entropy()
- tol = 1e-6
- assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
-
- class CrossEntropy(nn.Cell):
- """
- Test class: cross entropy between Normal distributions.
- """
- def __init__(self):
- super(CrossEntropy, self).__init__()
- self.n = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
-
- def construct(self, x_, y_):
- entropy = self.n.entropy()
- kl_loss = self.n.kl_loss('Normal', x_, y_)
- h_sum_kl = entropy + kl_loss
- cross_entropy = self.n.cross_entropy('Normal', x_, y_)
- return h_sum_kl - cross_entropy
-
- def test_cross_entropy():
- """
- Test cross_entropy.
- """
- cross_entropy = CrossEntropy()
- mean = Tensor([1.0], dtype=dtype.float32)
- sd = Tensor([1.0], dtype=dtype.float32)
- diff = cross_entropy(mean, sd)
- tol = 1e-6
- assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
-
- class Net(nn.Cell):
- """
- Test class: expand single distribution instance to multiple graphs
- by specifying the attributes.
- """
-
- def __init__(self):
- super(Net, self).__init__()
- self.normal = msd.Normal(0., 1., dtype=dtype.float32)
-
- def construct(self, x_, y_):
- kl = self.normal.kl_loss('Normal', x_, y_)
- prob = self.normal.prob(kl)
- return prob
-
- def test_multiple_graphs():
- """
- Test multiple graphs case.
- """
- prob = Net()
- mean_a = np.array([0.0]).astype(np.float32)
- sd_a = np.array([1.0]).astype(np.float32)
- mean_b = np.array([1.0]).astype(np.float32)
- sd_b = np.array([1.0]).astype(np.float32)
- ans = prob(Tensor(mean_b), Tensor(sd_b))
-
- diff_log_scale = np.log(sd_a) - np.log(sd_b)
- squared_diff = np.square(mean_a / sd_b - mean_b / sd_b)
- expect_kl_loss = 0.5 * squared_diff + 0.5 * \
- np.expm1(2 * diff_log_scale) - diff_log_scale
-
- norm_benchmark = stats.norm(np.array([0.0]), np.array([1.0]))
- expect_prob = norm_benchmark.pdf(expect_kl_loss).astype(np.float32)
-
- tol = 1e-6
- assert (np.abs(ans.asnumpy() - expect_prob) < tol).all()
|