|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """FTRL"""
- from mindspore.ops import functional as F, composite as C, operations as P
- from mindspore.common import Tensor
- import mindspore.common.dtype as mstype
- from mindspore._checkparam import Validator as validator
- from mindspore._checkparam import Rel
- from .optimizer import Optimizer, _apply_decay, _grad_scale
-
- _ftrl_opt = C.MultitypeFuncGraph("ftrl_opt")
-
-
- @_ftrl_opt.register("Function", "Function", "Function", "Function", "Number", "Number", "Number", "Tensor", "Tensor",
- "RowTensor", "Tensor", "Tensor", "Bool")
- def _tensor_run_opt_with_sparse(opt, spars_opt, push, pull, l1, l2, lr_power, learning_rate, linear,
- gradient, weight, moment, ps_parameter):
- """Apply sparse ftrl optimizer to the weight parameter when the gradient is sparse."""
- success = True
- indices = gradient.indices
- values = gradient.values
- if ps_parameter:
- op_shape = P.Shape()
- shapes = (op_shape(weight), op_shape(moment), op_shape(linear), op_shape(values), op_shape(indices))
- success = F.depend(success, pull(push((values, indices), shapes), weight))
- else:
- success = F.depend(success, spars_opt(weight, moment, linear, values, indices))
- return success
-
-
- @_ftrl_opt.register("Function", "Function", "Function", "Function", "Number", "Number", "Number", "Tensor", "Tensor",
- "Tensor", "Tensor", "Tensor", "Bool")
- def _tensor_run_opt(opt, spars_opt, push, pull, l1, l2, lr_power, learning_rate, linear,
- gradient, weight, moment, ps_parameter):
- """Apply ftrl optimizer to the weight parameter."""
- success = True
- if ps_parameter:
- op_shape = P.Shape()
- success = F.depend(success, pull(push((gradient, learning_rate, l1, l2, lr_power),
- (op_shape(weight), op_shape(moment), op_shape(linear))), weight))
- else:
- success = F.depend(success, opt(weight, moment, linear, gradient, learning_rate, l1, l2, lr_power))
- return success
-
-
- def _check_param(initial_accum, lr_power, l1, l2, use_locking, prim_name=None):
- """Check param."""
- validator.check_value_type("initial_accum", initial_accum, [float], prim_name)
- validator.check_number("initial_accum", initial_accum, 0.0, Rel.GE, prim_name)
-
- validator.check_value_type("lr_power", lr_power, [float], prim_name)
- validator.check_number("lr_power", lr_power, 0.0, Rel.LE, prim_name)
-
- validator.check_value_type("l1", l1, [float], prim_name)
- validator.check_number("l1", l1, 0.0, Rel.GE, prim_name)
-
- validator.check_value_type("l2", l2, [float], prim_name)
- validator.check_number("l2", l2, 0.0, Rel.GE, prim_name)
-
- validator.check_value_type("use_locking", use_locking, [bool], prim_name)
-
-
- class FTRL(Optimizer):
- """
- Implement the FTRL algorithm with ApplyFtrl Operator.
-
- FTRL is an online convex optimization algorithm that adaptively chooses its regularization function
- based on the loss functions. Refer to paper `Adaptive Bound Optimization for Online Convex Optimization
- <https://arxiv.org/abs/1002.4908>`_. Refer to paper `Ad Click Prediction: a View from the Trenches
- <https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf>`_ for engineering document.
-
- Note:
- When separating parameter groups, the weight decay in each group will be applied on the parameters if the
- weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
- on all of the parameters.
-
- To improve parameter groups performance, the customized order of parameters can be supported.
-
- The sparse strategy is applied while the SparseGatherV2 operator being used for forward network.
- The sparse feature is under continuous development. The sparse behavior is currently performed on the CPU.
-
- Args:
- params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
- the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
- "lr", "weight_decay" and "order_params" are the keys can be parsed.
-
- - params: Required. The value should be a list of `Parameter`.
-
- - lr: Using different learning rate by separating parameters is currently not supported.
-
- - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
- will be used. If not, the `weight_decay` in the API will be used.
-
- - order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
- the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
- in the value of 'order_params' should be in one of group parameters.
-
- initial_accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1.
- learning_rate (float): The learning rate value, should be zero or positive, dynamic learning rate is currently
- not supported. Default: 0.001.
- lr_power (float): Learning rate power controls how the learning rate decreases during training, must be less
- than or equal to zero. Use fixed learning rate if lr_power is zero. Default: -0.5.
- l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
- l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
- use_locking (bool): If True, use locks for updating operation. Default: False.
- loss_scale (float): Value for the loss scale. It should be equal to or greater than 1.0. Default: 1.0.
- weight_decay (float): Weight decay value to multiply weight, must be zero or positive value. Default: 0.0.
-
- Inputs:
- - **grads** (tuple[Tensor]) - The gradients of `params` in the optimizer, the shape is the same as the `params`
- in optimizer.
-
- Outputs:
- tuple[Parameter], the updated parameters, the shape is the same as `params`.
-
- Examples:
- >>> net = Net()
- >>> #1) All parameters use the same learning rate and weight decay
- >>> optim = nn.FTRL(params=net.trainable_params())
- >>>
- >>> #2) Use parameter groups and set different values
- >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
- >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
- >>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
- >>> {'params': no_conv_params},
- >>> {'order_params': net.trainable_params()}]
- >>> optim = nn.FTRL(group_params, learning_rate=0.1, weight_decay=0.0)
- >>> # The conv_params's parameters will use weight decay of 0.01.
- >>> # The no_conv_params's parameters will use default weight decay of 0.0.
- >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
- >>>
- >>> loss = nn.SoftmaxCrossEntropyWithLogits()
- >>> model = Model(net, loss_fn=loss, optimizer=optim)
- """
- def __init__(self, params, initial_accum=0.1, learning_rate=0.001, lr_power=-0.5, l1=0.0, l2=0.0,
- use_locking=False, loss_scale=1.0, weight_decay=0.0):
- super(FTRL, self).__init__(learning_rate, params, weight_decay, loss_scale=loss_scale)
- if self.dynamic_lr or self.is_group_lr:
- raise ValueError('Dynamic learning rate or group learning rate is currently not supported.')
- _check_param(initial_accum, lr_power, l1, l2, use_locking, self.cls_name)
- self.moments = self.parameters.clone(prefix="moments", init=initial_accum)
- self.linear = self.parameters.clone(prefix="linear", init='zeros')
- self.l1 = l1
- self.l2 = l2
- self.lr_power = lr_power
- if not self.is_group:
- self.decay_flags = tuple((lambda: True)() for x in self.parameters)
- self.hyper_map = C.HyperMap()
- self.opt = P.ApplyFtrl(use_locking=use_locking)
- self.sparse_opt = P.FusedSparseFtrl(learning_rate, l1, l2, lr_power, use_locking=use_locking)
- self._ps_pull = P.Pull()
- self._ps_push = P.Push("Ftrl", [0, 1, 2])
- self._ps_push.add_prim_attr("init_accum", initial_accum)
- self._ps_push.add_prim_attr("lr", learning_rate)
- self._ps_push.add_prim_attr("l1", l1)
- self._ps_push.add_prim_attr("l2", l2)
- self._ps_push.add_prim_attr("lr_power", lr_power)
-
- def construct(self, grads):
- params = self.parameters
- moments = self.moments
- linear = self.linear
- grads = self.decay_weight(grads)
- grads = self.scale_grad(grads)
- lr = self.get_lr()
-
- success = self.map_(F.partial(_ftrl_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
- self.l1, self.l2, self.lr_power, lr),
- linear, grads, params, moments, self.ps_parameters)
- return success
|