|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """dataset base."""
- import os
-
- from mindspore import dataset as ds
- from mindspore.common import dtype as mstype
- from mindspore.dataset.transforms import c_transforms as C
- from mindspore.dataset.vision import Inter
- from mindspore.dataset.vision import c_transforms as CV
-
-
- def create_mnist_dataset(mode='train', num_samples=2, batch_size=2):
- """create dataset for train or test"""
- mnist_path = '/home/workspace/mindspore_dataset/mnist'
- num_parallel_workers = 1
-
- # define dataset
- mnist_ds = ds.MnistDataset(os.path.join(mnist_path, mode), num_samples=num_samples, shuffle=False)
-
- resize_height, resize_width = 32, 32
-
- # define map operations
- resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
- rescale_nml_op = CV.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081)
- rescale_op = CV.Rescale(1.0 / 255.0, shift=0.0)
- hwc2chw_op = CV.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- # apply map operations on images
- mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
- mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)
-
- # apply DatasetOps
- mnist_ds = mnist_ds.batch(batch_size=batch_size, drop_remainder=True)
-
- return mnist_ds
|