|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.ops.operations.array_ops as P
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
-
- class DepthToSpaceNet(nn.Cell):
- def __init__(self, nptype, block_size=2, input_shape=(1, 12, 1, 1)):
- super(DepthToSpaceNet, self).__init__()
- self.DepthToSpace = P.DepthToSpace(2)
- input_size = 1
- for i in input_shape:
- input_size = input_size*i
- data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
- self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
-
-
- @ms_function
- def construct(self):
- y1 = self.DepthToSpace(self.x1)
- return y1
-
-
- def DepthToSpace(nptype, block_size=2, input_shape=(1, 12, 1, 1)):
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- input_size = 1
- for i in input_shape:
- input_size = input_size*i
- expect = np.array([[[[0, 3],
- [6, 9]],
- [[1, 4],
- [7, 10]],
- [[2, 5],
- [8, 11]]]]).astype(nptype)
-
- dts = DepthToSpaceNet(nptype, block_size, input_shape)
- output = dts()
- print(output)
- assert (output.asnumpy() == expect).all()
-
- def DepthToSpace_pynative(nptype, block_size=2, input_shape=(1, 12, 1, 1)):
- context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
- input_size = 1
- for i in input_shape:
- input_size = input_size*i
- expect = np.array([[[[0, 3],
- [6, 9]],
- [[1, 4],
- [7, 10]],
- [[2, 5],
- [8, 11]]]]).astype(nptype)
-
- dts = P.DepthToSpace(2)
- arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))
- output = dts(arr_input)
-
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_float32():
- DepthToSpace(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_float16():
- DepthToSpace(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_int32():
- DepthToSpace(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_int64():
- DepthToSpace(np.int64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_int8():
- DepthToSpace(np.int8)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_int16():
- DepthToSpace(np.int16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_uint8():
- DepthToSpace(np.uint8)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_uint16():
- DepthToSpace(np.uint16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_uint32():
- DepthToSpace(np.uint32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_graph_uint64():
- DepthToSpace(np.uint64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_float32():
- DepthToSpace_pynative(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_float16():
- DepthToSpace_pynative(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_int32():
- DepthToSpace_pynative(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_int64():
- DepthToSpace_pynative(np.int64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_int8():
- DepthToSpace_pynative(np.int8)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_int16():
- DepthToSpace_pynative(np.int16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_uint8():
- DepthToSpace_pynative(np.uint8)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_uint16():
- DepthToSpace_pynative(np.uint16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_uint32():
- DepthToSpace_pynative(np.uint32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_depthtospace_pynative_uint64():
- DepthToSpace_pynative(np.uint64)
|