|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- CenterNet evaluation script.
- """
-
- import os
- import time
- import copy
- import json
- import argparse
- import cv2
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- from mindspore import context
- from mindspore.common.tensor import Tensor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- import mindspore.log as logger
- from src import COCOHP, CenterNetMultiPoseEval
- from src import convert_eval_format, post_process, merge_outputs
- from src import visual_image
- from src.config import dataset_config, net_config, eval_config
-
- _current_dir = os.path.dirname(os.path.realpath(__file__))
-
- parser = argparse.ArgumentParser(description='CenterNet evaluation')
- parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'CPU'],
- help='device where the code will be implemented. (Default: Ascend)')
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--load_checkpoint_path", type=str, default="", help="Load checkpoint file path")
- parser.add_argument("--data_dir", type=str, default="", help="Dataset directory, "
- "the absolute image path is joined by the data_dir "
- "and the relative path in anno_path")
- parser.add_argument("--run_mode", type=str, default="test", help="test or validation, default is test.")
- parser.add_argument("--visual_image", type=str, default="false", help="Visulize the ground truth and predicted image")
- parser.add_argument("--enable_eval", type=str, default="true", help="Whether evaluate accuracy after prediction")
- parser.add_argument("--save_result_dir", type=str, default="", help="The path to save the predict results")
-
- args_opt = parser.parse_args()
-
- def predict():
- '''
- Predict function
- '''
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
- if args_opt.device_target == "Ascend":
- context.set_context(device_id=args_opt.device_id)
- enable_nms_fp16 = True
- else:
- enable_nms_fp16 = False
-
- logger.info("Begin creating {} dataset".format(args_opt.run_mode))
- coco = COCOHP(dataset_config, run_mode=args_opt.run_mode, net_opt=net_config,
- enable_visual_image=(args_opt.visual_image == "true"), save_path=args_opt.save_result_dir,)
- coco.init(args_opt.data_dir, keep_res=eval_config.keep_res)
- dataset = coco.create_eval_dataset()
-
- net_for_eval = CenterNetMultiPoseEval(net_config, eval_config.K, enable_nms_fp16)
- net_for_eval.set_train(False)
-
- param_dict = load_checkpoint(args_opt.load_checkpoint_path)
- load_param_into_net(net_for_eval, param_dict)
-
- # save results
- save_path = os.path.join(args_opt.save_result_dir, args_opt.run_mode)
- if not os.path.exists(save_path):
- os.makedirs(save_path)
- if args_opt.visual_image == "true":
- save_pred_image_path = os.path.join(save_path, "pred_image")
- if not os.path.exists(save_pred_image_path):
- os.makedirs(save_pred_image_path)
- save_gt_image_path = os.path.join(save_path, "gt_image")
- if not os.path.exists(save_gt_image_path):
- os.makedirs(save_gt_image_path)
-
- total_nums = dataset.get_dataset_size()
- print("\n========================================\n")
- print("Total images num: ", total_nums)
- print("Processing, please wait a moment.")
-
- pred_annos = {"images": [], "annotations": []}
-
- index = 0
- for data in dataset.create_dict_iterator(num_epochs=1):
- index += 1
- image = data['image']
- image_id = data['image_id'].asnumpy().reshape((-1))[0]
-
- # run prediction
- start = time.time()
- detections = []
- for scale in eval_config.multi_scales:
- images, meta = coco.pre_process_for_test(image.asnumpy(), image_id, scale)
- detection = net_for_eval(Tensor(images))
- dets = post_process(detection.asnumpy(), meta, scale)
- detections.append(dets)
- end = time.time()
- print("Image {}/{} id: {} cost time {} ms".format(index, total_nums, image_id, (end - start) * 1000.))
-
- # post-process
- detections = merge_outputs(detections, eval_config.soft_nms)
- # get prediction result
- pred_json = convert_eval_format(detections, image_id)
- gt_image_info = coco.coco.loadImgs([image_id])
-
- for image_info in pred_json["images"]:
- pred_annos["images"].append(image_info)
- for image_anno in pred_json["annotations"]:
- pred_annos["annotations"].append(image_anno)
- if args_opt.visual_image == "true":
- img_file = os.path.join(coco.image_path, gt_image_info[0]['file_name'])
- gt_image = cv2.imread(img_file)
- if args_opt.run_mode != "test":
- annos = coco.coco.loadAnns(coco.anns[image_id])
- visual_image(copy.deepcopy(gt_image), annos, save_gt_image_path)
- anno = copy.deepcopy(pred_json["annotations"])
- visual_image(gt_image, anno, save_pred_image_path, score_threshold=eval_config.score_thresh)
-
- # save results
- save_path = os.path.join(args_opt.save_result_dir, args_opt.run_mode)
- if not os.path.exists(save_path):
- os.makedirs(save_path)
- pred_anno_file = os.path.join(save_path, '{}_pred_result.json').format(args_opt.run_mode)
- json.dump(pred_annos, open(pred_anno_file, 'w'))
- pred_res_file = os.path.join(save_path, '{}_pred_eval.json').format(args_opt.run_mode)
- json.dump(pred_annos["annotations"], open(pred_res_file, 'w'))
-
- if args_opt.run_mode != "test" and args_opt.enable_eval:
- run_eval(coco.annot_path, pred_res_file)
-
-
- def run_eval(gt_anno, pred_anno):
- """evaluation by coco api"""
- coco = COCO(gt_anno)
- coco_dets = coco.loadRes(pred_anno)
- coco_eval = COCOeval(coco, coco_dets, "keypoints")
- coco_eval.evaluate()
- coco_eval.accumulate()
- coco_eval.summarize()
- coco_eval = COCOeval(coco, coco_dets, "bbox")
- coco_eval.evaluate()
- coco_eval.accumulate()
- coco_eval.summarize()
-
-
- if __name__ == "__main__":
- predict()
|