|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############test textcnn example on movie review#################
- python eval.py
- """
- import mindspore.nn as nn
- from mindspore.nn.metrics import Accuracy
- from mindspore import context
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from utils.moxing_adapter import moxing_wrapper
- from utils.device_adapter import get_device_id
- from utils.config import config
- from src.textcnn import TextCNN
- from src.dataset import MovieReview, SST2, Subjectivity
-
- @moxing_wrapper()
- def eval_net():
- '''eval net'''
- if config.dataset == 'MR':
- instance = MovieReview(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
- elif config.dataset == 'SUBJ':
- instance = Subjectivity(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
- elif config.dataset == 'SST2':
- instance = SST2(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
- device_target = config.device_target
- context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
- if device_target == "Ascend":
- context.set_context(device_id=get_device_id())
- dataset = instance.create_test_dataset(batch_size=config.batch_size)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
- net = TextCNN(vocab_len=instance.get_dict_len(), word_len=config.word_len,
- num_classes=config.num_classes, vec_length=config.vec_length)
- opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate=0.001,
- weight_decay=float(config.weight_decay))
-
- param_dict = load_checkpoint(config.checkpoint_file_path)
- print("load checkpoint from [{}].".format(config.checkpoint_file_path))
-
- load_param_into_net(net, param_dict)
- net.set_train(False)
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()})
-
- acc = model.eval(dataset)
- print("accuracy: ", acc)
-
- if __name__ == '__main__':
- eval_net()
|