|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export ckpt to model"""
- import argparse
- import numpy as np
-
- from mindspore import context, Tensor
- from mindspore.train.serialization import export, load_checkpoint
-
- from src.bgcf import BGCF
- from src.callback import ForwardBGCF
-
- parser = argparse.ArgumentParser(description="bgcf export")
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
- parser.add_argument("--file_name", type=str, default="bgcf", help="output file name.")
- parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
- parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
- help="device target")
- parser.add_argument("--input_dim", type=int, choices=[64, 128], default=64, help="embedding dimension")
- parser.add_argument("--embedded_dimension", type=int, default=64, help="output embedding dimension")
- parser.add_argument("--row_neighs", type=int, default=40, help="num of sampling neighbors in raw graph")
- parser.add_argument("--gnew_neighs", type=int, default=20, help="num of sampling neighbors in sample graph")
- parser.add_argument("--activation", type=str, default="tanh", choices=["relu", "tanh"], help="activation function")
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- if args.device_target == "Ascend":
- context.set_context(device_id=args.device_id)
-
- if __name__ == "__main__":
- num_user, num_item = 7068, 3570
-
- network = BGCF([args.input_dim, num_user, num_item],
- args.embedded_dimension,
- args.activation,
- [0.0, 0.0, 0.0],
- num_user,
- num_item,
- args.input_dim)
-
- load_checkpoint(args.ckpt_file, net=network)
-
- forward_net = ForwardBGCF(network)
-
- users = Tensor(np.zeros([num_user,]).astype(np.int32))
- items = Tensor(np.zeros([num_item,]).astype(np.int32))
- neg_items = Tensor(np.zeros([num_item, 1]).astype(np.int32))
- u_test_neighs = Tensor(np.zeros([num_user, args.row_neighs]).astype(np.int32))
- u_test_gnew_neighs = Tensor(np.zeros([num_user, args.gnew_neighs]).astype(np.int32))
- i_test_neighs = Tensor(np.zeros([num_item, args.row_neighs]).astype(np.int32))
- i_test_gnew_neighs = Tensor(np.zeros([num_item, args.gnew_neighs]).astype(np.int32))
-
- input_data = [users, items, neg_items, u_test_neighs, u_test_gnew_neighs, i_test_neighs, i_test_gnew_neighs]
- export(forward_net, *input_data, file_name=args.file_name, file_format=args.file_format)
|