|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """unet 310 infer."""
- import os
- import argparse
- import cv2
- import numpy as np
-
- from src.config import cfg_unet
-
- class dice_coeff():
- def __init__(self):
- self.clear()
- def clear(self):
- self._dice_coeff_sum = 0
- self._iou_sum = 0
- self._samples_num = 0
-
- def update(self, *inputs):
- if len(inputs) != 2:
- raise ValueError('Need 2 inputs ((y_softmax, y_argmax), y), but got {}'.format(len(inputs)))
- y = np.array(inputs[1])
- self._samples_num += y.shape[0]
- y = y.transpose(0, 2, 3, 1)
- b, h, w, c = y.shape
- if b != 1:
- raise ValueError('Batch size should be 1 when in evaluation.')
- y = y.reshape((h, w, c))
- if cfg_unet["eval_activate"].lower() == "softmax":
- y_softmax = np.squeeze(inputs[0][0], axis=0)
- if cfg_unet["eval_resize"]:
- y_pred = []
- for m in range(cfg_unet["num_classes"]):
- y_pred.append(cv2.resize(np.uint8(y_softmax[:, :, m] * 255), (w, h)) / 255)
- y_pred = np.stack(y_pred, axis=-1)
- else:
- y_pred = y_softmax
- elif cfg_unet["eval_activate"].lower() == "argmax":
- y_argmax = np.squeeze(inputs[0][1], axis=0)
- y_pred = []
- for n in range(cfg_unet["num_classes"]):
- if cfg_unet["eval_resize"]:
- y_pred.append(cv2.resize(np.uint8(y_argmax == n), (w, h), interpolation=cv2.INTER_NEAREST))
- else:
- y_pred.append(np.float32(y_argmax == n))
- y_pred = np.stack(y_pred, axis=-1)
- else:
- raise ValueError('config eval_activate should be softmax or argmax.')
- y_pred = y_pred.astype(np.float32)
- inter = np.dot(y_pred.flatten(), y.flatten())
- union = np.dot(y_pred.flatten(), y_pred.flatten()) + np.dot(y.flatten(), y.flatten())
-
- single_dice_coeff = 2*float(inter)/float(union+1e-6)
- single_iou = single_dice_coeff / (2 - single_dice_coeff)
- print("single dice coeff is: {}, IOU is: {}".format(single_dice_coeff, single_iou))
- self._dice_coeff_sum += single_dice_coeff
- self._iou_sum += single_iou
-
- def eval(self):
- if self._samples_num == 0:
- raise RuntimeError('Total samples num must not be 0.')
- return (self._dice_coeff_sum / float(self._samples_num), self._iou_sum / float(self._samples_num))
-
- def get_args():
- parser = argparse.ArgumentParser(description='Test the UNet on images and target masks',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('-d', '--data_url', dest='data_url', type=str, default='data/',
- help='data directory')
- parser.add_argument('-p', '--rst_path', dest='rst_path', type=str, default='./result_Files/',
- help='infer result path')
-
- return parser.parse_args()
-
-
- if __name__ == '__main__':
- args = get_args()
-
- rst_path = args.rst_path
- metrics = dice_coeff()
-
- if 'dataset' in cfg_unet and cfg_unet['dataset'] == "Cell_nuclei":
- img_size = tuple(cfg_unet['img_size'])
- for i, bin_name in enumerate(os.listdir('./preprocess_Result/')):
- f = bin_name.replace(".png", "")
- bin_name_softmax = f + "_0.bin"
- bin_name_argmax = f + "_1.bin"
- file_name_sof = rst_path + bin_name_softmax
- file_name_arg = rst_path + bin_name_argmax
- softmax_out = np.fromfile(file_name_sof, np.float32).reshape(1, 96, 96, 2)
- argmax_out = np.fromfile(file_name_arg, np.float32).reshape(1, 96, 96)
- mask = cv2.imread(os.path.join(args.data_url, f, "mask.png"), cv2.IMREAD_GRAYSCALE)
- mask = cv2.resize(mask, img_size)
- mask = mask.astype(np.float32) / 255
- mask = (mask > 0.5).astype(np.int)
- mask = (np.arange(2) == mask[..., None]).astype(int)
- mask = mask.transpose(2, 0, 1).astype(np.float32)
- label = mask.reshape(1, 2, 96, 96)
- metrics.update((softmax_out, argmax_out), label)
- else:
- label_list = np.load('label.npy')
- for j in range(len(os.listdir('./preprocess_Result/'))):
- file_name_sof = rst_path + "ISBI_test_bs_1_" + str(j) + "_0" + ".bin"
- file_name_arg = rst_path + "ISBI_test_bs_1_" + str(j) + "_1" + ".bin"
- softmax_out = np.fromfile(file_name_sof, np.float32).reshape(1, 576, 576, 2)
- argmax_out = np.fromfile(file_name_arg, np.float32).reshape(1, 576, 576)
- label = label_list[j]
- metrics.update((softmax_out, argmax_out), label)
-
- eval_score = metrics.eval()
- print("============== Cross valid dice coeff is:", eval_score[0])
- print("============== Cross valid IOU is:", eval_score[1])
|