|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Train SSD and get checkpoint files."""
-
- import os
- import argparse
- import ast
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.communication.management import init, get_rank
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
- from mindspore.train import Model
- from mindspore.context import ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common import set_seed, dtype
- from src.ssd import SSD300, SsdInferWithDecoder, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2,\
- ssd_mobilenet_v1_fpn, ssd_resnet50_fpn, ssd_vgg16
- from src.config import config
- from src.dataset import create_ssd_dataset, create_mindrecord
- from src.lr_schedule import get_lr
- from src.init_params import init_net_param, filter_checkpoint_parameter_by_list
- from src.eval_callback import EvalCallBack
- from src.eval_utils import apply_eval
- from src.box_utils import default_boxes
-
- set_seed(1)
-
- def get_args():
- parser = argparse.ArgumentParser(description="SSD training")
- parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
- help="run platform, support Ascend, GPU and CPU.")
- parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False,
- help="If set it true, only create Mindrecord, default is False.")
- parser.add_argument("--distribute", type=ast.literal_eval, default=False,
- help="Run distribute, default is False.")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
- parser.add_argument("--lr", type=float, default=0.05, help="Learning rate, default is 0.05.")
- parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
- parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
- parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.")
- parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
- parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
- parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
- parser.add_argument("--save_checkpoint_epochs", type=int, default=10, help="Save checkpoint epochs, default is 10.")
- parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
- parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
- help="Filter head weight parameters, default is False.")
- parser.add_argument('--freeze_layer', type=str, default="none", choices=["none", "backbone"],
- help="freeze the weights of network, support freeze the backbone's weights, "
- "default is not freezing.")
- parser.add_argument("--run_eval", type=ast.literal_eval, default=False,
- help="Run evaluation when training, default is False.")
- parser.add_argument("--save_best_ckpt", type=ast.literal_eval, default=True,
- help="Save best checkpoint when run_eval is True, default is True.")
- parser.add_argument("--eval_start_epoch", type=int, default=40,
- help="Evaluation start epoch when run_eval is True, default is 40.")
- parser.add_argument("--eval_interval", type=int, default=1,
- help="Evaluation interval when run_eval is True, default is 1.")
- args_opt = parser.parse_args()
- return args_opt
-
- def ssd_model_build(args_opt):
- if config.model == "ssd300":
- backbone = ssd_mobilenet_v2()
- ssd = SSD300(backbone=backbone, config=config)
- init_net_param(ssd)
- if args_opt.freeze_layer == "backbone":
- for param in backbone.feature_1.trainable_params():
- param.requires_grad = False
- elif config.model == "ssd_mobilenet_v1_fpn":
- ssd = ssd_mobilenet_v1_fpn(config=config)
- init_net_param(ssd)
- if config.feature_extractor_base_param != "":
- param_dict = load_checkpoint(config.feature_extractor_base_param)
- for x in list(param_dict.keys()):
- param_dict["network.feature_extractor.mobilenet_v1." + x] = param_dict[x]
- del param_dict[x]
- load_param_into_net(ssd.feature_extractor.mobilenet_v1.network, param_dict)
- elif config.model == "ssd_resnet50_fpn":
- ssd = ssd_resnet50_fpn(config=config)
- init_net_param(ssd)
- if config.feature_extractor_base_param != "":
- param_dict = load_checkpoint(config.feature_extractor_base_param)
- for x in list(param_dict.keys()):
- param_dict["network.feature_extractor.resnet." + x] = param_dict[x]
- del param_dict[x]
- load_param_into_net(ssd.feature_extractor.resnet, param_dict)
- elif config.model == "ssd_vgg16":
- ssd = ssd_vgg16(config=config)
- init_net_param(ssd)
- if config.feature_extractor_base_param != "":
- param_dict = load_checkpoint(config.feature_extractor_base_param)
- from src.vgg16 import ssd_vgg_key_mapper
- for k in ssd_vgg_key_mapper:
- v = ssd_vgg_key_mapper[k]
- param_dict["network.backbone." + v + ".weight"] = param_dict[k + ".weight"]
- del param_dict[k + ".weight"]
- load_param_into_net(ssd.backbone, param_dict)
- else:
- raise ValueError(f'config.model: {config.model} is not supported')
- return ssd
-
- def main():
- args_opt = get_args()
- rank = 0
- device_num = 1
- if args_opt.run_platform == "CPU":
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
- else:
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id)
- if args_opt.distribute:
- device_num = args_opt.device_num
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
- device_num=device_num)
- init()
- if config.model == "ssd_resnet50_fpn":
- context.set_auto_parallel_context(all_reduce_fusion_config=[90, 183, 279])
- if config.model == "ssd_vgg16":
- context.set_auto_parallel_context(all_reduce_fusion_config=[20, 41, 62])
- else:
- context.set_auto_parallel_context(all_reduce_fusion_config=[29, 58, 89])
- rank = get_rank()
-
- mindrecord_file = create_mindrecord(args_opt.dataset, "ssd.mindrecord", True)
-
- if args_opt.only_create_dataset:
- return
-
- loss_scale = float(args_opt.loss_scale)
- if args_opt.run_platform == "CPU":
- loss_scale = 1.0
-
- # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
- use_multiprocessing = (args_opt.run_platform != "CPU")
- dataset = create_ssd_dataset(mindrecord_file, repeat_num=1, batch_size=args_opt.batch_size,
- device_num=device_num, rank=rank, use_multiprocessing=use_multiprocessing)
-
- dataset_size = dataset.get_dataset_size()
- print(f"Create dataset done! dataset size is {dataset_size}")
- ssd = ssd_model_build(args_opt)
- if ("use_float16" in config and config.use_float16) or args_opt.run_platform == "GPU":
- ssd.to_float(dtype.float16)
- net = SSDWithLossCell(ssd, config)
-
- # checkpoint
- ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
- save_ckpt_path = './ckpt_' + str(rank) + '/'
- ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=save_ckpt_path, config=ckpt_config)
-
- if args_opt.pre_trained:
- param_dict = load_checkpoint(args_opt.pre_trained)
- if args_opt.filter_weight:
- filter_checkpoint_parameter_by_list(param_dict, config.checkpoint_filter_list)
- load_param_into_net(net, param_dict, True)
-
- lr = Tensor(get_lr(global_step=args_opt.pre_trained_epoch_size * dataset_size,
- lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
- warmup_epochs=config.warmup_epochs,
- total_epochs=args_opt.epoch_size,
- steps_per_epoch=dataset_size))
-
- if "use_global_norm" in config and config.use_global_norm:
- opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
- config.momentum, config.weight_decay, 1.0)
- net = TrainingWrapper(net, opt, loss_scale, True)
- else:
- opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
- config.momentum, config.weight_decay, loss_scale)
- net = TrainingWrapper(net, opt, loss_scale)
-
- callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
- if args_opt.run_eval:
- eval_net = SsdInferWithDecoder(ssd, Tensor(default_boxes), config)
- eval_net.set_train(False)
- mindrecord_file = create_mindrecord(args_opt.dataset, "ssd_eval.mindrecord", False)
- eval_dataset = create_ssd_dataset(mindrecord_file, batch_size=args_opt.batch_size, repeat_num=1,
- is_training=False, use_multiprocessing=False)
- if args_opt.dataset == "coco":
- anno_json = os.path.join(config.coco_root, config.instances_set.format(config.val_data_type))
- elif args_opt.dataset == "voc":
- anno_json = os.path.join(config.voc_root, config.voc_json)
- else:
- raise ValueError('SSD eval only support dataset mode is coco and voc!')
- eval_param_dict = {"net": eval_net, "dataset": eval_dataset, "anno_json": anno_json}
- eval_cb = EvalCallBack(apply_eval, eval_param_dict, interval=args_opt.eval_interval,
- eval_start_epoch=args_opt.eval_start_epoch, save_best_ckpt=True,
- ckpt_directory=save_ckpt_path, besk_ckpt_name="best_map.ckpt",
- metrics_name="mAP")
- callback.append(eval_cb)
- model = Model(net)
- dataset_sink_mode = False
- if args_opt.mode == "sink" and args_opt.run_platform != "CPU":
- print("In sink mode, one epoch return a loss.")
- dataset_sink_mode = True
- print("Start train SSD, the first epoch will be slower because of the graph compilation.")
- model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)
-
- if __name__ == '__main__':
- main()
|