|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############export checkpoint file into air, onnx, mindir models#################
- python export.py
- """
- import argparse
- import numpy as np
-
- import mindspore as ms
- from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
-
- from src.simclr_model import SimCLR
- from src.resnet import resnet50 as resnet
-
- parser = argparse.ArgumentParser(description='SimCLR')
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--batch_size", type=int, default=128, help="batch size")
- parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['cifar10'],
- help='Dataset, Currently only cifar10 is supported.')
- parser.add_argument('--device_target', type=str, default="Ascend",
- choices=['Ascend'],
- help='Device target, Currently only Ascend is supported.')
- parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
- parser.add_argument("--file_name", type=str, default="simclr", help="output file name.")
- parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
- if args_opt.device_target == "Ascend":
- context.set_context(device_id=args_opt.device_id)
-
- if __name__ == '__main__':
- if args_opt.dataset_name == 'cifar10':
- width_multiplier = 1
- cifar_stem = True
- projection_dimension = 128
- image_height = 32
- image_width = 32
- else:
- raise ValueError("dataset is not support.")
-
- base_net = resnet(1, width_multiplier=width_multiplier, cifar_stem=cifar_stem)
- net = SimCLR(base_net, projection_dimension, base_net.end_point.in_channels)
-
- param_dict = load_checkpoint(args_opt.ckpt_file)
- load_param_into_net(net, param_dict)
-
- input_arr = Tensor(np.zeros([args_opt.batch_size, 3, image_height, image_width]), ms.float32)
- export(net, input_arr, file_name=args_opt.file_name, file_format=args_opt.file_format)
|