|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
-
- import argparse
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.communication.management import init, get_rank
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
- from mindspore.train.model import Model
- from mindspore.context import ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common import set_seed
-
- from src.dataset import train_dataset_creator
- from src.config import config
- from src.ETSNET.etsnet import ETSNet
- from src.ETSNET.dice_loss import DiceLoss
- from src.network_define import WithLossCell, TrainOneStepCell, LossCallBack
- from src.lr_schedule import dynamic_lr
-
- parser = argparse.ArgumentParser(description='Hyperparams')
- parser.add_argument('--run_distribute', default=False, action='store_true',
- help='Run distribute, default is false.')
- parser.add_argument('--pre_trained', type=str, default='', help='Pretrain file path.')
- parser.add_argument('--device_id', type=int, default=0, help='Device id, default is 0.')
- parser.add_argument('--device_num', type=int, default=1, help='Use device nums, default is 1.')
- args = parser.parse_args()
-
- set_seed(1)
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
-
- def train():
- rank_id = 0
- if args.run_distribute:
- context.set_auto_parallel_context(device_num=args.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
- gradients_mean=True)
- init()
- rank_id = get_rank()
-
- # dataset/network/criterion/optim
- ds = train_dataset_creator(rank_id, args.device_num)
- step_size = ds.get_dataset_size()
- print('Create dataset done!')
-
- config.INFERENCE = False
- net = ETSNet(config)
- net = net.set_train()
- param_dict = load_checkpoint(args.pre_trained)
- load_param_into_net(net, param_dict)
- print('Load Pretrained parameters done!')
-
- criterion = DiceLoss(batch_size=config.TRAIN_BATCH_SIZE)
-
- lrs = dynamic_lr(config.BASE_LR, config.TRAIN_TOTAL_ITER, config.WARMUP_STEP, config.WARMUP_RATIO)
- opt = nn.SGD(params=net.trainable_params(), learning_rate=lrs, momentum=0.99, weight_decay=5e-4)
-
- # warp model
- net = WithLossCell(net, criterion)
- if args.run_distribute:
- net = TrainOneStepCell(net, opt, reduce_flag=True, mean=True, degree=args.device_num)
- else:
- net = TrainOneStepCell(net, opt)
-
- time_cb = TimeMonitor(data_size=step_size)
- loss_cb = LossCallBack(per_print_times=10)
- # set and apply parameters of check point config.TRAIN_MODEL_SAVE_PATH
- ckpoint_cf = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=2)
- ckpoint_cb = ModelCheckpoint(prefix="ETSNet", config=ckpoint_cf,
- directory="./ckpt_{}".format(rank_id))
-
- model = Model(net)
- model.train(config.TRAIN_REPEAT_NUM, ds, dataset_sink_mode=True, callbacks=[time_cb, loss_cb, ckpoint_cb])
-
- if __name__ == '__main__':
- train()
|