|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """DPN model eval with MindSpore"""
- import os
- import argparse
-
- from mindspore import context
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.train.model import Model
- from mindspore.common import set_seed
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.dpn import dpns
- from src.config import config
- from src.imagenet_dataset import classification_dataset
- set_seed(1)
- # set context
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE,
- device_target="Ascend", save_graphs=False, device_id=device_id)
-
-
- def parse_args():
- """parameters"""
- parser = argparse.ArgumentParser('dpn evaluating')
- # dataset related
- parser.add_argument('--data_dir', type=str, default='', help='eval data dir')
- # network related
- parser.add_argument('--pretrained', type=str, default='', help='ckpt path to load')
- args, _ = parser.parse_known_args()
- args.image_size = config.image_size
- args.num_classes = config.num_classes
- args.batch_size = config.batch_size
- args.num_parallel_workers = config.num_parallel_workers
- args.backbone = config.backbone
- args.loss_scale_num = config.loss_scale_num
- args.rank = config.rank
- args.group_size = config.group_size
- args.dataset = config.dataset
- return args
-
-
- def dpn_evaluate(args):
- # create evaluate dataset
- eval_path = os.path.join(args.data_dir, 'val')
- eval_dataset = classification_dataset(eval_path,
- image_size=args.image_size,
- num_parallel_workers=args.num_parallel_workers,
- per_batch_size=args.batch_size,
- max_epoch=1,
- rank=args.rank,
- shuffle=False,
- group_size=args.group_size,
- mode='eval')
-
- # create network
- net = dpns[args.backbone](num_classes=args.num_classes)
- # load checkpoint
- load_param_into_net(net, load_checkpoint(args.pretrained))
- print("load checkpoint from [{}].".format(args.pretrained))
- # loss
- if args.dataset == "imagenet-1K":
- loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
- else:
- if not args.label_smooth:
- args.label_smooth_factor = 0.0
- loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
-
- # create model
- model = Model(net, amp_level="O2", keep_batchnorm_fp32=False, loss_fn=loss,
- metrics={'top_1_accuracy', 'top_5_accuracy'})
- # evaluate
- output = model.eval(eval_dataset)
- print(f'Evaluation result: {output}.')
-
-
- if __name__ == '__main__':
- dpn_evaluate(parse_args())
- print('DPN evaluate success!')
|