|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """post process for 310 inference"""
- import os
- import argparse
- import numpy as np
- import cv2
-
- from eval import cal_hist, pre_process
-
- def parse_args():
- parser = argparse.ArgumentParser(description="deeplabv3 accuracy calculation")
- parser.add_argument('--data_root', type=str, default='', help='root path of val data')
- parser.add_argument('--data_lst', type=str, default='', help='list of val data')
- parser.add_argument('--batch_size', type=int, default=1, help='batch size')
- parser.add_argument('--crop_size', type=int, default=513, help='crop size')
- parser.add_argument('--scales', type=float, action='append', help='scales of evaluation')
- parser.add_argument('--flip', action='store_true', help='perform left-right flip')
- parser.add_argument('--ignore_label', type=int, default=255, help='ignore label')
- parser.add_argument('--num_classes', type=int, default=21, help='number of classes')
- parser.add_argument('--result_path', type=str, default='./result_Files', help='result Files path')
- args, _ = parser.parse_known_args()
- return args
-
- def eval_batch(args, result_file, img_lst, crop_size=513, flip=True):
- result_lst = []
- batch_size = len(img_lst)
- batch_img = np.zeros((args.batch_size, 3, crop_size, crop_size), dtype=np.float32)
- resize_hw = []
- for l in range(batch_size):
- img_ = img_lst[l]
- img_, resize_h, resize_w = pre_process(args, img_, crop_size)
- batch_img[l] = img_
- resize_hw.append([resize_h, resize_w])
-
- batch_img = np.ascontiguousarray(batch_img)
- net_out = np.fromfile(result_file, np.float32).reshape(args.batch_size, args.num_classes, crop_size, crop_size)
-
- for bs in range(batch_size):
- probs_ = net_out[bs][:, :resize_hw[bs][0], :resize_hw[bs][1]].transpose((1, 2, 0))
- ori_h, ori_w = img_lst[bs].shape[0], img_lst[bs].shape[1]
- probs_ = cv2.resize(probs_, (ori_w, ori_h))
- result_lst.append(probs_)
-
- return result_lst
-
-
- def eval_batch_scales(args, eval_net, img_lst, scales,
- base_crop_size=513, flip=True):
- sizes_ = [int((base_crop_size - 1) * sc) + 1 for sc in scales]
- probs_lst = eval_batch(args, eval_net, img_lst, crop_size=sizes_[0], flip=flip)
- print(sizes_)
- for crop_size_ in sizes_[1:]:
- probs_lst_tmp = eval_batch(args, eval_net, img_lst, crop_size=crop_size_, flip=flip)
- for pl, _ in enumerate(probs_lst):
- probs_lst[pl] += probs_lst_tmp[pl]
-
- result_msk = []
- for i in probs_lst:
- result_msk.append(i.argmax(axis=2))
- return result_msk
-
-
- def acc_cal():
- args = parse_args()
- args.image_mean = [103.53, 116.28, 123.675]
- args.image_std = [57.375, 57.120, 58.395]
- # data list
- with open(args.data_lst) as f:
- img_lst = f.readlines()
- # evaluate
- hist = np.zeros((args.num_classes, args.num_classes))
- batch_img_lst = []
- batch_msk_lst = []
- bi = 0
- image_num = 0
- for i, line in enumerate(img_lst):
- img_path, msk_path = line.strip().split(' ')
- result_file = os.path.join(args.result_path, os.path.basename(img_path).split('.jpg')[0] + '_0.bin')
- img_path = os.path.join(args.data_root, img_path)
- msk_path = os.path.join(args.data_root, msk_path)
- img_ = cv2.imread(img_path)
- msk_ = cv2.imread(msk_path, cv2.IMREAD_GRAYSCALE)
- batch_img_lst.append(img_)
- batch_msk_lst.append(msk_)
- bi += 1
- if bi == args.batch_size:
- batch_res = eval_batch_scales(args, result_file, batch_img_lst, scales=args.scales,
- base_crop_size=args.crop_size, flip=args.flip)
- for mi in range(args.batch_size):
- hist += cal_hist(batch_msk_lst[mi].flatten(), batch_res[mi].flatten(), args.num_classes)
-
- bi = 0
- batch_img_lst = []
- batch_msk_lst = []
- print('processed {} images'.format(i+1))
- image_num = i
-
- if bi > 0:
- batch_res = eval_batch_scales(args, result_file, batch_img_lst, scales=args.scales,
- base_crop_size=args.crop_size, flip=args.flip)
- for mi in range(bi):
- hist += cal_hist(batch_msk_lst[mi].flatten(), batch_res[mi].flatten(), args.num_classes)
- print('processed {} images'.format(image_num + 1))
-
- print(hist)
- iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
- print('per-class IoU', iu)
- print('mean IoU', np.nanmean(iu))
-
- if __name__ == '__main__':
- acc_cal()
|