|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ######################## eval alexnet example ########################
- eval alexnet according to model file:
- python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
- """
-
- import os
- # import sys
- # sys.path.append(os.path.join(os.getcwd(), 'utils'))
- from utils.config import config
- from utils.moxing_adapter import moxing_wrapper
- from utils.device_adapter import get_device_id, get_device_num
-
- from src.dataset import create_dataset_cifar10, create_dataset_imagenet
- from src.alexnet import AlexNet
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.communication.management import init
-
-
- if os.path.exists(config.data_path_local):
- config.data_path = config.data_path_local
- load_path = config.ckpt_path_local
- else:
- load_path = os.path.join(config.data_path, 'checkpoint_alexnet-30_1562.ckpt')
-
- def modelarts_process():
- pass
-
- @moxing_wrapper(pre_process=modelarts_process)
- def eval_alexnet():
- print("============== Starting Testing ==============")
-
- device_num = get_device_num()
- if device_num > 1:
- # context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
- context.set_context(mode=context.GRAPH_MODE, device_target='Davinci', save_graphs=False)
- if config.device_target == "Ascend":
- context.set_context(device_id=get_device_id())
- init()
- elif config.device_target == "GPU":
- init()
-
- if config.dataset_name == 'cifar10':
- network = AlexNet(config.num_classes, phase='test')
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- opt = nn.Momentum(network.trainable_params(), config.learning_rate, config.momentum)
- ds_eval = create_dataset_cifar10(config.data_path, config.batch_size, status="test", \
- target=config.device_target)
- param_dict = load_checkpoint(load_path)
- print("load checkpoint from [{}].".format(load_path))
- load_param_into_net(network, param_dict)
- network.set_train(False)
- model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()})
-
- elif config.dataset_name == 'imagenet':
- network = AlexNet(config.num_classes, phase='test')
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- ds_eval = create_dataset_imagenet(config.data_path, config.batch_size, training=False)
- param_dict = load_checkpoint(load_path)
- print("load checkpoint from [{}].".format(load_path))
- load_param_into_net(network, param_dict)
- network.set_train(False)
- model = Model(network, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'})
-
- else:
- raise ValueError("Unsupported dataset.")
-
- if ds_eval.get_dataset_size() == 0:
- raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
-
- result = model.eval(ds_eval, dataset_sink_mode=config.dataset_sink_mode)
- print("result : {}".format(result))
-
-
- if __name__ == "__main__":
- eval_alexnet()
|