|
- import os
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.common.tensor import Tensor
- from mindspore.common.initializer import TruncatedNormal
- from mindspore.common.parameter import ParameterTuple
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
- from mindspore.train.serialization import export
-
-
- def weight_variable():
- return TruncatedNormal(0.02)
-
-
- def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
- weight = weight_variable()
- return nn.Conv2d(in_channels, out_channels,
- kernel_size=kernel_size, stride=stride, padding=padding,
- weight_init=weight, has_bias=False, pad_mode="valid")
-
-
- def fc_with_initialize(input_channels, out_channels):
- weight = weight_variable()
- bias = weight_variable()
- return nn.Dense(input_channels, out_channels, weight, bias)
-
-
- class LeNet5(nn.Cell):
- def __init__(self):
- super(LeNet5, self).__init__()
- self.batch_size = 32
- self.conv1 = conv(1, 6, 5)
- self.conv2 = conv(6, 16, 5)
- self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
- self.fc2 = fc_with_initialize(120, 84)
- self.fc3 = fc_with_initialize(84, 10)
- self.relu = nn.ReLU()
- self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
- self.reshape = P.Reshape()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.conv2(x)
- x = self.relu(x)
- x = self.max_pool2d(x)
- x = self.reshape(x, (self.batch_size, -1))
- x = self.fc1(x)
- x = self.relu(x)
- x = self.fc2(x)
- x = self.relu(x)
- x = self.fc3(x)
- return x
-
-
- class WithLossCell(nn.Cell):
- def __init__(self, network):
- super(WithLossCell, self).__init__(auto_prefix=False)
- self.loss = nn.SoftmaxCrossEntropyWithLogits()
- self.network = network
-
- def construct(self, x, label):
- predict = self.network(x)
- return self.loss(predict, label)
-
-
- class TrainOneStepCell(nn.Cell):
- def __init__(self, network):
- super(TrainOneStepCell, self).__init__(auto_prefix=False)
- self.network = network
- self.network.set_train()
- self.weights = ParameterTuple(network.trainable_params())
- self.optimizer = nn.Momentum(self.weights, 0.1, 0.9)
- self.hyper_map = C.HyperMap()
- self.grad = C.GradOperation(get_by_list=True)
-
- def construct(self, x, label):
- weights = self.weights
- grads = self.grad(self.network, weights)(x, label)
- return self.optimizer(grads)
-
-
- def test_export_lenet_grad_mindir():
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- network = LeNet5()
- network.set_train()
- predict = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
- label = Tensor(np.zeros([32, 10]).astype(np.float32))
- net = TrainOneStepCell(WithLossCell(network))
- file_name = "lenet_grad"
- export(net, predict, label, file_name=file_name, file_format='MINDIR')
- verify_name = file_name + ".mindir"
- assert os.path.exists(verify_name)
- os.remove(verify_name)
|