|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
-
- import mindspore as ms
- from mindspore import context, Tensor, Parameter
- from mindspore.nn import Cell, Momentum
- from mindspore.ops import operations as P
- from mindspore.train import Model
- from tests.dataset_mock import MindData
-
-
- class Dataset(MindData):
- def __init__(self, predict, label, length=3):
- super(Dataset, self).__init__(size=length)
- self.predict = predict
- self.label = label
- self.index = 0
- self.length = length
-
- def __iter__(self):
- return self
-
- def __next__(self):
- if self.index >= self.length:
- raise StopIteration
- self.index += 1
- return self.predict, self.label
-
- def reset(self):
- self.index = 0
-
-
- class Net(Cell):
- def __init__(self, w1, strategy1=None, strategy2=None):
- super().__init__()
- self.mul = P.Mul().shard(strategy1)
- self.w1 = Parameter(w1, "w1")
- self.topk = P.TopK().shard(strategy2)
-
- def construct(self, x, b):
- out = self.mul(x, self.w1)
- out, _ = self.topk(out, 8)
- return out
-
-
- _x = Tensor(np.ones([16, 64]), dtype=ms.float32)
- _b = Tensor(np.ones([16, 64]), dtype=ms.float32)
- _w1 = Tensor(np.ones([128, 64]), dtype=ms.float32)
-
-
- def compile_net(net):
- context.set_context(save_graphs=True)
- learning_rate = 0.1
- momentum = 0.9
- epoch_size = 2
- dataset = Dataset(_x, _b)
- opt = Momentum(net.trainable_params(), learning_rate, momentum)
- model = Model(net, optimizer=opt)
- model.train(epoch_size, dataset, dataset_sink_mode=False)
- context.reset_auto_parallel_context()
-
-
- def test_topk_data_parallel():
- context.set_auto_parallel_context(
- parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((8, 1), (8, 1))
- strategy2 = ((8, 1),)
- net = Net(_w1, strategy1, strategy2)
- compile_net(net)
-
-
- def test_topk_model_parallel():
- context.set_auto_parallel_context(
- parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((2, 4), (2, 4))
- strategy2 = ((2, 1),)
- net = Net(_w1, strategy1, strategy2)
- compile_net(net)
-
-
- def test_topk_auto_parallel():
- context.set_auto_parallel_context(
- parallel_mode="auto_parallel", device_num=8, global_rank=0)
- net = Net(_w1)
- compile_net(net)
-
-
- def test_topk_strategy_error():
- context.set_auto_parallel_context(
- parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((8, 1), (8, 1))
- strategy2 = ((1, 8),)
- net = Net(_w1, strategy1, strategy2)
- with pytest.raises(RuntimeError):
- compile_net(net)
|