|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.common.parameter import Parameter
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- grad_all = C.GradOperation(get_all=True)
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x):
- predict = self.network(x)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x):
- return grad_all(self.network)(x)
-
- def test_reshape_unexpand():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reshape = P.Reshape()
- self.mul = P.Mul().shard(((1, 8), (1, 1, 8)))
- self.mul_weight = Parameter(Tensor(np.ones([96, 128]), dtype=ms.float32), name="weight")
-
- def construct(self, x):
- weight = self.reshape(self.mul_weight, (1, 128, 96))
- out = self.mul(x, weight)
- return out
-
- size = 8
- context.set_auto_parallel_context(device_num=size, global_rank=0)
- x = Tensor(np.ones([128, 96]), dtype=ms.float32)
-
- net = GradWrap(NetWithLoss(Net()))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
-
- def test_reshape_unexpand_1():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reshape = P.Reshape()
- self.mul = P.Mul().shard(((1, 1, 8), (1, 8)))
- self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
-
- def construct(self, data):
- x = self.reshape(self.mul_weight, (1, 128, 96))
- out = self.mul(x, self.mul_weight)
- return out
-
- size = 8
- context.set_auto_parallel_context(device_num=size, global_rank=0)
- x = Tensor(np.ones([128, 96]), dtype=ms.float32)
-
- net = GradWrap(NetWithLoss(Net()))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
-
- def test_reshape_unexpand_2():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reshape = P.Reshape()
- self.mul = P.Mul().shard(((1, 4, 2), (4, 2)))
- self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
-
- def construct(self, data):
- x = self.reshape(self.mul_weight, (1, 128, 96))
- out = self.mul(x, self.mul_weight)
- return out
-
- size = 8
- context.set_auto_parallel_context(device_num=size, global_rank=0)
- x = Tensor(np.ones([128, 96]), dtype=ms.float32)
-
- net = GradWrap(NetWithLoss(Net()))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
-
- def test_reshape_unexpand_3():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reshape = P.Reshape()
- self.relu1 = P.ReLU().shard(((4, 1),))
- self.relu2 = P.ReLU().shard(((1, 4),))
-
- def construct(self, data):
- x = self.relu1(data)
- x = self.reshape(x, (3, 4))
- x = self.relu2(x)
- return x
-
- size = 4
- context.set_auto_parallel_context(device_num=size, global_rank=0)
- x = Tensor(np.ones([4, 3]), dtype=ms.float32)
-
- net = GradWrap(NetWithLoss(Net()))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
-
- def test_reshape_unexpand_4():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reshape = P.Reshape()
- self.relu1 = P.ReLU().shard(((4, 1),))
- self.relu2 = P.ReLU().shard(((1, 2, 2),))
-
- def construct(self, data):
- x = self.relu1(data)
- x = self.reshape(x, (3, 2, 2))
- x = self.relu2(x)
- return x
-
- size = 4
- context.set_auto_parallel_context(device_num=size, global_rank=0)
- x = Tensor(np.ones([4, 3]), dtype=ms.float32)
-
- net = GradWrap(NetWithLoss(Net()))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
-
- def test_reshape_unexpand_5():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reshape = P.Reshape()
- self.relu1 = P.ReLU().shard(((2, 2, 1),))
- self.relu2 = P.ReLU().shard(((1, 4),))
-
- def construct(self, data):
- x = self.relu1(data)
- x = self.reshape(x, (3, 4))
- x = self.relu2(x)
- return x
-
- size = 4
- context.set_auto_parallel_context(device_num=size, global_rank=0)
- x = Tensor(np.ones([2, 2, 3]), dtype=ms.float32)
-
- net = GradWrap(NetWithLoss(Net()))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
-
- def test_reshape_unexpand_6():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reshape = P.Reshape()
- self.relu1 = P.ReLU().shard(((2, 1),))
- self.relu2 = P.ReLU().shard(((1, 1, 4),))
-
- def construct(self, data):
- x = self.relu1(data)
- x = self.reshape(x, (1, 3, 4))
- x = self.relu2(x)
- return x
-
- size = 4
- context.set_auto_parallel_context(device_num=size, global_rank=0)
- x = Tensor(np.ones([4, 3]), dtype=ms.float32)
-
- net = GradWrap(NetWithLoss(Net()))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
-
- def test_reshape_unexpand_7():
- class Net(nn.Cell):
- def __init__(self, in_channel=3, out_channel=8, axis=1, input_shape=(32, 4, 110, -1),
- mul_size=(32, 1, 220, 220)):
- super().__init__()
- mul_np = np.full(mul_size, 0.5, dtype=np.float32)
- self.mul_weight = Parameter(Tensor(mul_np), name="mul_weight")
- self.mul = P.Mul()
- self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
- kernel_size=5, has_bias=True, weight_init='ones',
- bias_init='ones', pad_mode='valid')
- self.softmax = nn.Softmax(axis=axis)
- self.relu = nn.ReLU()
- self.reshape = P.Reshape()
- self.input_shape = input_shape
-
- def construct(self, inputs):
- x = self.conv(inputs)
- x = self.softmax(x)
- x = self.relu(x)
- x = self.mul(x, self.mul_weight)
- x = self.reshape(x, self.input_shape)
- return x
-
- size = 8
- context.set_auto_parallel_context(device_num=size, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="auto_parallel")
- x = Tensor(np.ones([32, 3, 224, 224]), dtype=ms.float32)
- net = GradWrap(NetWithLoss(Net()))
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
-
- def test_reshape_unexpand_8():
- class Net(nn.Cell):
- def __init__(self):
- super().__init__()
- self.reshape = P.Reshape()
- self.mul = P.Mul().shard(((1, 4, 2), (4, 2)))
- self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
-
- def construct(self, data):
- x = self.reshape(self.mul_weight, (1, 128, 96))
- out = self.mul(x, self.mul_weight)
- return out
-
- size = 8
- context.set_auto_parallel_context(device_num=size, global_rank=0)
- x = Tensor(np.ones([128, 96]), dtype=ms.float32)
-
- net = GradWrap(NetWithLoss(Net()))
- context.set_auto_parallel_context(parallel_mode="auto_parallel")
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
|