|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import mindspore as ms
- import mindspore.context as context
- from mindspore import Tensor, Parameter
- import mindspore.nn as nn
- from mindspore.common.api import _executor
- from mindspore.nn import TrainOneStepCell, Momentum
- from mindspore.ops import operations as P
- from mindspore.nn import Dense, Flatten
-
-
- class Net(nn.Cell):
- def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None, is_parameter=True):
- super(Net, self).__init__()
- self.pack = P.Stack(axis=axis).shard(strategy1)
- self.mul = P.Mul().shard(strategy2)
- if is_parameter:
- self.weight1 = Parameter(weight1, "w1")
- else:
- self.weight1 = weight1
- self.weight2 = Parameter(weight2, "w2")
-
- def construct(self, x):
- out = self.pack([self.weight1, self.weight2])
- out = self.mul(x, out)
- return out
-
-
- class Net1(nn.Cell):
- def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None):
- super(Net1, self).__init__()
- self.pack = P.Stack(axis=axis).shard(strategy1)
- self.mul = P.Mul().shard(strategy2)
- self.weight1 = Parameter(weight1, "w1")
- self.weight2 = Parameter(weight2, "w2")
-
- def construct(self, x):
- out = self.mul(x, self.weight1)
- out = self.pack([out, self.weight2])
- return out
-
-
- class Net2(nn.Cell):
- def __init__(self, weight1, weight2, weight3, axis=0, strategy1=None, strategy2=None, is_parameter=True):
- super(Net2, self).__init__()
- self.pack = P.Stack(axis=axis).shard(strategy1)
- self.mul = P.Mul().shard(strategy2)
- if is_parameter:
- self.weight1 = Parameter(weight1, "w1")
- else:
- self.weight1 = weight1
- self.weight2 = Parameter(weight2, "w2")
- self.weight3 = Parameter(weight2, "w3")
-
- def construct(self, x):
- out = self.pack([self.weight1, self.weight2, self.weight3])
- out = self.mul(x, out)
- return out
-
-
- class PackConstantNet1(nn.Cell):
- def __init__(self, dense_in_channel, dense_out_channel, axis=0, shape=None, strategy=None):
- super().__init__()
- weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32)
- bias_np = np.full((dense_out_channel), 0.01, dtype=np.float32)
- self.pack_con = Tensor(np.full(shape, 0.01, dtype=np.float32))
- self.flat = Flatten()
- self.dense = Dense(in_channels=dense_in_channel,
- out_channels=dense_out_channel,
- weight_init=Tensor(weight_np),
- bias_init=Tensor(bias_np),
- has_bias=True)
- self.mul = P.Mul()
- self.pack = P.Stack(axis)
- if strategy is not None:
- self.pack.shard(strategy)
-
- def construct(self, inputs):
- x = self.pack([self.pack_con, self.pack_con, self.pack_con, self.pack_con,
- self.pack_con, self.pack_con, self.pack_con, self.pack_con])
- x1 = self.flat(x)
- x2 = self.flat(inputs)
- x = self.mul(x1, x2)
- x = self.dense(x)
- return x
-
-
- class PackConstantNet2(nn.Cell):
- def __init__(self, dense_in_channel, dense_out_channel, axis=0, shape=None, strategy=None):
- super().__init__()
- weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32)
- bias_np = np.full((dense_out_channel), 0.01, dtype=np.float32)
- self.pack_con = Tensor(np.full(shape, 0.01, dtype=np.float32))
- self.flat = Flatten()
- self.dense = Dense(in_channels=dense_in_channel,
- out_channels=dense_out_channel,
- weight_init=Tensor(weight_np),
- bias_init=Tensor(bias_np),
- has_bias=True)
- self.mul = P.Mul()
- self.pack = P.Stack(axis)
- if strategy is not None:
- self.pack.shard(strategy)
-
- def construct(self, inputs):
- x = self.pack((self.pack_con, self.pack_con, self.pack_con, self.pack_con,
- self.pack_con, self.pack_con, self.pack_con, self.pack_con))
- x1 = self.flat(x)
- x2 = self.flat(inputs)
- x = self.mul(x1, x2)
- x = self.dense(x)
- return x
-
-
- _w1 = Tensor(np.ones([48, 64]), dtype=ms.float32)
- _w2 = Tensor(np.ones([48, 64]), dtype=ms.float32)
- _w3 = Tensor(np.ones([48, 64]), dtype=ms.float32)
- _x = Tensor(np.ones([2, 48, 64]), dtype=ms.float32)
- _x1 = Tensor(np.ones([48, 64]), dtype=ms.float32)
- _x2 = Tensor(np.ones([3, 48, 64]), dtype=ms.float32)
- _x_c = Tensor(np.ones([8, 8, 8]), dtype=ms.float32)
-
-
- def compile_net(net):
- context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- train_net.set_train()
- _executor.compile(train_net, _x)
- context.reset_auto_parallel_context()
-
-
- def compile_net1(net):
- context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- train_net.set_train()
- _executor.compile(train_net, _x1)
- context.reset_auto_parallel_context()
-
-
- def compile_net2(net):
- context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- train_net.set_train()
- _executor.compile(train_net, _x2)
- context.reset_auto_parallel_context()
-
-
- def compile_net_con(net):
- context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- _executor.compile(train_net, _x_c)
- context.reset_auto_parallel_context()
-
-
- def test_pack_parameter():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((4, 2), (4, 2))
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net(_w1, _w2, 0, strategy1, strategy2)
- compile_net(net)
-
-
- def test_pack_parameter_no_full_split():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net(_w1, _w2, 0, strategy1, strategy2)
- compile_net(net)
-
-
- def test_pack_tensor_and_parameter():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((4, 2), (4, 2))
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net(_w1, _w2, 0, strategy1, strategy2, False)
- compile_net(net)
-
-
- def test_pack_output():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((4, 2), (4, 2))
- strategy2 = ((4, 2), (4, 2))
- net = Net1(_w1, _w2, 0, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_pack_output_axis1():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((4, 2), (4, 2))
- strategy2 = ((4, 2), (4, 2))
- net = Net1(_w1, _w2, 1, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_pack_output_no_full_split():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((4, 2), (4, 2))
- net = Net1(_w1, _w2, 0, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_pack_no_strategy():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = None
- strategy2 = ((4, 2), (4, 2))
- net = Net1(_w1, _w2, 0, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_pack_no_strategy_axis1():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = None
- strategy2 = ((4, 2), (4, 2))
- net = Net1(_w1, _w2, 1, strategy1, strategy2)
- compile_net1(net)
-
-
- def test_pack_auto_parallel():
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
- net = Net1(_w1, _w2, 0)
- compile_net1(net)
-
-
- def test_pack_auto_parallel_axis1():
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
- net = Net1(_w1, _w2, 1)
- compile_net1(net)
-
-
- def test_pack_auto_parallel_3_tensor():
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
- net = Net2(_w1, _w2, _w3)
- compile_net2(net)
-
-
- def test_pack_constant1():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- net = PackConstantNet1(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8),
- strategy=((4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1)))
- compile_net_con(net)
-
-
- def test_pack_constant2():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- net = PackConstantNet2(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8),
- strategy=((4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1)))
- compile_net_con(net)
-
-
- def test_pack_auto_constant():
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
- net = PackConstantNet1(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8),
- strategy=((8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1)))
- compile_net_con(net)
|