|
-
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test parameter """
- import numpy as np
- import pytest
-
- from mindspore import context, Tensor, Parameter, ParameterTuple, nn
- from mindspore._checkparam import Validator
- from mindspore.common import dtype as mstype
- from mindspore.common.initializer import initializer
-
- def test_parameter_init():
- dat = np.array([[1, 2, 3], [2, 3, 4]])
- tensor = Tensor(dat)
- Parameter(tensor, name="testParameter", requires_grad=True, layerwise_parallel=False)
-
-
- def test_parameter_tuple_illegal():
- p1 = Parameter(initializer(0, [1], mstype.int32), name="global_step1")
- p2 = Parameter(initializer(0, [1], mstype.int32), name="global_step2")
- plist = [p1, p2]
- plist2 = [p1, "str"]
- ptuple = (p1, p2)
- ptuple_str = ("2", "1")
- pstr = "[2,3]"
- pnum = 3
-
- ParameterTuple(plist)
- ParameterTuple(ptuple)
- with pytest.raises(TypeError):
- ParameterTuple(p1)
- with pytest.raises(TypeError):
- ParameterTuple(plist2)
- with pytest.raises(TypeError):
- ParameterTuple(ptuple_str)
- with pytest.raises(TypeError):
- ParameterTuple(pstr)
- with pytest.raises(TypeError):
- ParameterTuple(pnum)
-
-
- def test_parameter_init_illegal():
- dat = np.array([[1, 2, 3], [2, 3, 4]])
- tensor = Tensor(dat)
- data_none = None
- data_bool = True
- data_str = "nicai"
- data_int = 3
- data_list = [1, "2", True]
- data_tuple = (1, 2, 3)
-
- # test data
- Parameter(tensor, name=data_str)
- Parameter(data_int, name=data_str)
- Parameter(dat, name=data_str)
- with pytest.raises(ValueError):
- Parameter(data_bool, name=data_str)
-
- # test name
- Parameter(tensor, name=data_none)
- with pytest.raises(ValueError):
- Parameter(tensor, name=dat)
- with pytest.raises(ValueError):
- Parameter(tensor, name=tensor)
- with pytest.raises(ValueError):
- Parameter(tensor, name=data_bool)
- with pytest.raises(ValueError):
- Parameter(tensor, name=data_int)
- with pytest.raises(ValueError):
- Parameter(tensor, name=data_list)
- with pytest.raises(ValueError):
- Parameter(tensor, name=data_tuple)
-
- Parameter(tensor, name=data_str, requires_grad=data_bool)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_none)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=dat)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=tensor)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_str)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_int)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_list)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_tuple)
-
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_bool)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=dat)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=tensor)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_none)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_str)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_int)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_list)
- with pytest.raises(TypeError):
- Parameter(tensor, name=data_str, requires_grad=data_bool, layerwise_parallel=data_tuple)
-
-
- def test_check_str_by_regular():
- str1 = "12_sf.asdf_"
- str2 = "x12_sf.asdf."
- str3 = "_x12_sf.asdf"
- str4 = ".12_sf.asdf"
- str5 = "12_sf.a$sdf."
- str6 = "12+sf.asdf"
- Validator.check_str_by_regular(str1)
- Validator.check_str_by_regular(str2)
- Validator.check_str_by_regular(str3)
- with pytest.raises(ValueError):
- Validator.check_str_by_regular(str4)
- with pytest.raises(ValueError):
- Validator.check_str_by_regular(str5)
- with pytest.raises(ValueError):
- Validator.check_str_by_regular(str6)
-
- def test_parameter_compute():
- para_1 = Parameter(initializer('ones', [1, 2, 3], mstype.int32), 'test1')
- para_2 = Parameter(initializer('ones', [1, 2, 3], mstype.int32), 'test2')
-
- t3 = Tensor(np.ones((1, 2, 3)))
-
- out = para_1 + para_2
- assert np.array_equal(out.asnumpy(), np.ones((1, 2, 3)) * 2)
-
- out = para_1 * para_2
- assert np.array_equal(out.asnumpy(), np.ones((1, 2, 3)))
-
- out = para_1 + t3
- assert np.array_equal(out.asnumpy(), np.ones((1, 2, 3)) * 2)
-
- out = para_1 * t3
- assert np.array_equal(out.asnumpy(), np.ones((1, 2, 3)))
-
- assert isinstance(para_1, Tensor)
-
-
- def test_scalar_parameter_update():
- # float
- fp = Parameter(0.5, 'fp')
- fp.set_data(0.8)
- assert np.array_equal(fp.data.asnumpy(), np.array(0.8, np.float32))
- fp.set_data(1)
- assert np.array_equal(fp.data.asnumpy(), np.array(1.0, np.float32))
- int_ = Parameter(1, 'fp')
- int_.set_data(2)
- assert np.array_equal(int_.data.asnumpy(), np.array(2, np.int32))
- with pytest.raises(TypeError):
- int_.set_data(1.2)
- # Tensor
- fp32 = Tensor(0.5, mstype.float32)
- int32 = Tensor(2, mstype.int32)
- fp16 = Tensor(0.6, mstype.float16)
- int16 = Tensor(3, mstype.int16)
- bool_ = Tensor(np.array(True, dtype=np.bool_))
- # updata_by_tensor
- fp32_p = Parameter(fp32, 'fp32')
- fp32_p.set_data(0.8)
- fp32_p.set_data(1)
- fp32_p.set_data(int32)
- fp32_p.set_data(fp32)
- fp32_p.set_data(int16)
- fp32_p.set_data(fp16)
- fp32_p.set_data(bool_)
-
- # updata_by_tensor
- fp16_p = Parameter(fp16, 'fp16')
- with pytest.raises(TypeError):
- fp16_p.set_data(fp32)
-
-
- def test_parameter_lazy_init():
- # support lazy init in SEMI_AUTO_PARALLEL mode
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8)
- # Call init_data() without set set_data.
- para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test1')
- assert isinstance(para.data, Tensor)
- para = para.init_data()
- assert isinstance(para.data, Tensor)
- assert np.array_equal(para.data.asnumpy(), np.ones((1, 2, 3)))
-
- # Call init_data() after set_data is set.
- para = Parameter(initializer('ones', [1, 2, 3], mstype.float32), 'test2')
- assert isinstance(para.data, Tensor)
- # expect type error when not init
- with pytest.raises(TypeError):
- para.set_data(Tensor(np.zeros((1, 2, 3))))
- # init then assign
- para = para.init_data()
- # check the type
- with pytest.raises(TypeError):
- para.set_data(Tensor(np.zeros((1, 2, 3))))
- # check the shape
- with pytest.raises(ValueError):
- para.set_data(Tensor(np.zeros((1, 2))))
- # expect change ok
- para.set_data(Tensor(np.zeros((1, 2, 3)).astype(np.float32)))
- assert np.array_equal(para.data.asnumpy(), np.zeros((1, 2, 3)))
- para.set_data(initializer('ones', [1, 2, 3], mstype.float32))
- assert isinstance(para.data, Tensor)
- # same object and has inited
- assert np.array_equal(para.data.asnumpy(), np.ones((1, 2, 3)))
- # expect no effect.
- para.init_data()
- assert np.array_equal(para.data.asnumpy(), np.ones((1, 2, 3)))
- para.set_data(Tensor(np.zeros((1, 2)).astype(np.float32)), slice_shape=True)
- assert np.array_equal(para.data.asnumpy(), np.zeros((1, 2)))
- para.set_data(initializer('ones', [1, 2], mstype.float32), slice_shape=True)
- assert np.array_equal(para.data.asnumpy(), np.ones((1, 2)))
- context.reset_auto_parallel_context()
-
-
- def test_parameter_as_output():
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- initial_input = initializer('One', shape=(2,), dtype=mstype.int32)
- updated_input = Tensor([2, 2], mstype.int32)
- class Net(nn.Cell):
- def __init__(self, initial, updated):
- super().__init__()
- self.initial = initial
- self.updated = updated
- self.p = Parameter(self.initial, name="weight")
- self.new_p = self.p.init_data()
- self.new_p.set_data(self.updated)
- def construct(self):
- return self.new_p
-
- net = Net(initial_input, updated_input)
- output = net()
- assert np.array_equal(output.asnumpy(), np.array([2, 2], np.int32))
- context.reset_auto_parallel_context()
|