|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test loss """
- import numpy as np
- import pytest
- from mindspore.common import dtype as mstype
- from mindspore import nn
- from mindspore import Tensor
- from ..ut_filter import non_graph_engine
-
-
- def test_L1Loss():
- loss = nn.L1Loss()
- input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32))
- loss(input_data, target_data)
-
-
- def test_MSELoss():
- loss = nn.MSELoss()
- input_data = Tensor(np.array([[1, 2, 3], [2, 3, 2]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 0, 5], [1, 2, 3]]).astype(np.float32))
- loss(input_data, target_data)
-
-
- @non_graph_engine
- def test_SoftmaxCrossEntropyWithLogits():
- """ test_SoftmaxCrossEntropyWithLogits """
- loss = nn.SoftmaxCrossEntropyWithLogits()
-
- logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
- labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
- loss.construct(logits, labels)
-
-
- def test_SoftmaxCrossEntropyWithLogits_reduce():
- """ test_SoftmaxCrossEntropyWithLogits """
- loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean")
-
- logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
- labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
- loss(logits, labels)
-
-
- def test_BCELoss():
- """ test_BCELoss """
- loss = nn.BCELoss()
-
- inputs_data = Tensor(np.array([[0.1, 0.2, 0.3], [0.5, 0.7, 0.9]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 1, 0], [0, 0, 1]]).astype(np.float32))
- loss(inputs_data, target_data)
-
-
- def test_BCELoss_reduce():
- """ test_BCELoss """
- loss = nn.BCELoss(reduction='mean')
-
- inputs_data = Tensor(np.array([[0.1, 0.2, 0.3], [0.5, 0.7, 0.9]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 1, 0], [0, 0, 1]]).astype(np.float32))
- loss(inputs_data, target_data)
-
-
- def test_BCELoss_weight():
- """ test_BCELoss """
- weight = Tensor(np.array([[1.0, 2.0, 3.0], [2.2, 2.6, 3.9]]).astype(np.float32))
- loss = nn.BCELoss(weight=weight)
-
- inputs_data = Tensor(np.array([[0.1, 0.2, 0.3], [0.5, 0.7, 0.9]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 1, 0], [0, 0, 1]]).astype(np.float32))
- loss(inputs_data, target_data)
-
-
- def test_cosine_embedding_loss():
- """ test CosineEmbeddingLoss """
- loss = nn.CosineEmbeddingLoss()
- x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]).astype(np.float32))
- x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]).astype(np.float32))
- label = Tensor(np.array([1, -1]).astype(np.int32))
- loss(x1, x2, label)
-
-
- def test_focal_loss():
- """ test_FocalLoss """
- x1 = Tensor([[0.8, 1.4], [0.5, 0.9], [1.2, 0.9]], mstype.float32)
- x2 = Tensor([[1], [1], [0]], mstype.int32)
- focalloss = nn.FocalLoss()
- focalloss(x1, x2)
-
-
- def test_focal_loss_gamma():
- """ test_FocalLoss """
- x1 = Tensor([[0.8, 1.4], [0.5, 0.9], [1.2, 0.9]], mstype.float32)
- x2 = Tensor([[1], [1], [0]], mstype.int32)
- with pytest.raises(TypeError):
- focalloss = nn.FocalLoss(weight=None, gamma="mmm", reduction='mean')
- focalloss(x1, x2)
-
-
- def test_focal_loss_weight():
- """ test_FocalLoss """
- x1 = Tensor([[0.8, 1.4], [0.5, 0.9], [1.2, 0.9]], mstype.float32)
- x2 = Tensor([[1], [1]], mstype.int32)
- with pytest.raises(TypeError):
- focalloss = nn.FocalLoss(weight='a', gamma=2.0, reduction='mean')
- focalloss(x1, x2)
-
-
- def test_focal_loss_reduction():
- """ test_FocalLoss """
- x1 = Tensor([[0.8, 1.4], [0.5, 0.9], [1.2, 0.9]], mstype.float32)
- x2 = Tensor([[1], [1], [0]], mstype.int32)
- with pytest.raises(ValueError):
- focalloss = nn.FocalLoss(weight=None, gamma=2.0, reduction='m')
- focalloss(x1, x2)
-
-
- def test_focal_loss_input():
- """ test_FocalLoss """
- x1 = Tensor([[0.8, 1.4], [0.5, 0.9], [1.2, 0.9]], mstype.float32)
- x2 = Tensor([[1]], mstype.int32)
- focalloss = nn.FocalLoss(weight=None, gamma=2.0, reduction='mean')
- with pytest.raises(ValueError):
- focalloss(x1, x2)
-
-
- def test_dice_loss():
- """ test_dice_loss """
- loss = nn.DiceLoss()
- y_pred = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32)
- y = Tensor(np.array([[0, 1], [1, 0], [0, 1]]), mstype.float32)
- # Pass the test if no error is reported
- loss(y_pred, y)
-
-
- def test_dice_loss_check_shape():
- """ test_dice_loss """
- loss = nn.DiceLoss()
- y_pred = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32)
- y = Tensor(np.array([[1, 0], [0, 1]]), mstype.float32)
- with pytest.raises(ValueError):
- loss(y_pred, y)
-
-
- def test_multi_class_dice_loss():
- """ test_multi_class_dice_loss """
- loss = nn.MultiClassDiceLoss(weights=None, ignore_indiex=None, activation="softmax")
- y_pred = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32)
- y = Tensor(np.array([[0, 1], [1, 0], [0, 1]]), mstype.float32)
- loss(y_pred, y)
-
-
- def test_multi_class_dice_loss_check_shape():
- """ test_multi_class_dice_loss """
- loss = nn.MultiClassDiceLoss(weights=None, ignore_indiex=None, activation="softmax")
- y_pred = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32)
- y = Tensor(np.array([[1, 0], [0, 1]]), mstype.float32)
- with pytest.raises(ValueError):
- loss(y_pred, y)
-
-
- def test_multi_class_dice_loss_init_weight():
- """ test_multi_class_dice_loss """
- with pytest.raises(TypeError):
- loss = nn.MultiClassDiceLoss(weights='1', ignore_indiex=None, activation="softmax")
- y_pred = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32)
- y = Tensor(np.array([[1, 0], [0, 1]]), mstype.float32)
- loss(y_pred, y)
-
-
- def test_multi_class_dice_loss_init_ignore_indiex():
- """ test_multi_class_dice_loss """
- with pytest.raises(TypeError):
- loss = nn.MultiClassDiceLoss(weights=None, ignore_indiex="2", activation="softmax")
- y_pred = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32)
- y = Tensor(np.array([[1, 0], [0, 1]]), mstype.float32)
- loss(y_pred, y)
-
-
- def test_multi_class_dice_loss_init_activation():
- """ test_multi_class_dice_loss """
- with pytest.raises(TypeError):
- loss = nn.MultiClassDiceLoss(weights=None, ignore_indiex=None, activation=2)
- y_pred = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32)
- y = Tensor(np.array([[1, 0], [0, 1]]), mstype.float32)
- loss(y_pred, y)
-
-
- def test_multi_class_dice_loss_init_activation2():
- """ test_multi_class_dice_loss """
- with pytest.raises(ValueError):
- loss = nn.MultiClassDiceLoss(weights=None, ignore_indiex=None, activation='www')
- y_pred = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mstype.float32)
- y = Tensor(np.array([[1, 0], [0, 1]]), mstype.float32)
- loss(y_pred, y)
-
-
- def test_rmse_loss():
- loss = nn.RMSELoss()
- input_data = Tensor(np.array([[1, 2, 3], [2, 3, 2]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 0, 5], [1, 2, 3]]).astype(np.float32))
- loss(input_data, target_data)
-
-
- def test_mae_loss():
- loss = nn.MAELoss()
- input_data = Tensor(np.array([[1, 2, 3], [2, 3, 2]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 0, 5], [1, 2, 3]]).astype(np.float32))
- loss(input_data, target_data)
|