|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test lazy adam """
- import pytest
- import numpy as np
- from mindspore.nn.optim import LazyAdam, FTRL, Adam, ProximalAdagrad
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter, context
- from mindspore.ops import operations as P
-
- @pytest.fixture(scope="module", autouse=True)
- def setup_teardown():
- context.set_context(enable_sparse=True)
- yield
- context.set_context(enable_sparse=False)
-
-
- class NetWithSparseGatherV2(nn.Cell):
- """ NetWithSparseGatherV2 definition """
- def __init__(self):
- super(NetWithSparseGatherV2, self).__init__()
- self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
- self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2")
- self.axis = 0
- self.gather = P.SparseGatherV2()
-
- def construct(self, indices, label):
- return self.gather(self.weight1, indices, self.axis) + self.weight2
-
-
- def test_ftrl_target():
- """ test_ftrl_target """
- net = NetWithSparseGatherV2()
- net.set_train()
-
- optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0)
- if optimizer.target not in ('CPU', 'Ascend'):
- raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))
-
-
- def test_lazyadam_target():
- """ test_lazyadam_target """
- net = NetWithSparseGatherV2()
- net.set_train()
-
- optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
- if optimizer.target not in ('CPU', 'Ascend'):
- raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))
-
-
- def test_adam_target():
- """ test_adam_target """
- net = NetWithSparseGatherV2()
- net.set_train()
-
- optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9)
- if optimizer.target not in ('CPU', 'Ascend'):
- raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))
-
-
- def test_proximal_target():
- """ test_proximal_target """
- net = NetWithSparseGatherV2()
- net.set_train()
-
- optimizer = ProximalAdagrad(net.trainable_params(), weight_decay=0.9, loss_scale=1024.0)
- if optimizer.target not in ('CPU', 'Ascend'):
- raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))
|