|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test lamb """
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter
- from mindspore.common.api import _executor
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.optim import Lamb
- from mindspore.ops import operations as P
- import mindspore.common.dtype as mstype
- from mindspore.nn.learning_rate_schedule import LearningRateSchedule, PolynomialDecayLR, WarmUpLR
-
-
- class LambLearningRate(LearningRateSchedule):
- def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power):
- super(LambLearningRate, self).__init__()
- self.warmup_lr = WarmUpLR(learning_rate, warmup_steps)
- self.decay_lr = PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
- self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
-
- self.greater = P.Greater()
- self.one = Tensor(np.array([1.0]).astype(np.float32))
- self.cast = P.Cast()
-
- def construct(self, global_step):
- is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
- warmup_lr = self.warmup_lr(global_step)
- decay_lr = self.decay_lr(global_step)
- lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
- return lr
-
-
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self):
- super(Net, self).__init__()
- self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
- self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
- self.matmul = P.MatMul()
- self.biasAdd = P.BiasAdd()
-
- def construct(self, x):
- x = self.biasAdd(self.matmul(x, self.weight), self.bias)
- return x
-
-
- class NetWithoutWeight(nn.Cell):
- """ NetWithoutWeight definition """
-
- def __init__(self):
- super(NetWithoutWeight, self).__init__()
- self.matmul = P.MatMul()
-
- def construct(self, x):
- x = self.matmul(x, x)
- return x
-
-
- def test_lamb_compile_dynamic_lr():
- """ test_Lamb_compile """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- warmup_decay_lr = LambLearningRate(0.01, 0.0001, 10, 20, 1.0)
- optimizer = Lamb(net.trainable_params(), warmup_decay_lr)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_lamb_compile():
- """ test_Lamb_compile """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
-
- optimizer = Lamb(net.trainable_params(), 0.02, 0.9)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_lamb_group():
- """ test_Lamb_group_compile """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- warmup_decay_lr = LambLearningRate(0.01, 0.0001, 10, 20, 1.0)
- all_params = net.trainable_params()
- group_params = [{'params': [all_params[0]], 'lr': warmup_decay_lr, 'weight_decay': 0.9},
- {'params': [all_params[1]]}]
- optimizer = Lamb(group_params, 0.02)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
|