|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test FTRL """
- import pytest
- import numpy as np
-
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter, context
- from mindspore.common.api import _executor
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.optim import FTRL
- from mindspore.ops import operations as P
-
- @pytest.fixture(scope="module", autouse=True)
- def setup_teardown():
- context.set_context(enable_sparse=True)
- yield
- context.set_context(enable_sparse=False)
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name='weight')
- self.bias = Parameter(Tensor(np.ones([10]).astype(np.float32)), name='bias')
- self.matmul = P.MatMul()
- self.biasAdd = P.BiasAdd()
-
- def construct(self, x):
- x = self.biasAdd(self.matmul(x, self.weight), self.bias)
- return x
-
-
- class NetWithSparseGatherV2(nn.Cell):
- """ NetWithSparseGatherV2 definition """
- def __init__(self):
- super(NetWithSparseGatherV2, self).__init__()
- self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
- self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2")
- self.axis = 0
- self.gather = P.SparseGatherV2()
-
- def construct(self, indices, label):
- return self.gather(self.weight1, indices, self.axis) + self.weight2
-
-
- def test_ftrl():
- """ test_ftrl """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0)
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_spares_ftrl_compile():
- """ test sparse ftrl compile """
- indices = Tensor(np.array([0, 1]).astype(np.int32))
- label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
- net = NetWithSparseGatherV2()
- net.set_train()
-
- optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0)
- optimizer.target = 'CPU'
- train_network = TrainOneStepCell(net, optimizer)
- _executor.compile(train_network, indices, label)
-
-
- def test_spares_ftrl():
- """ test sparse ftrl"""
- indices = Tensor(np.array([0, 1]).astype(np.int32))
- label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
- net = NetWithSparseGatherV2()
- net.set_train()
-
- optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0)
- optimizer.target = 'Ascend'
- train_network = TrainOneStepCell(net, optimizer)
- _executor.compile(train_network, indices, label)
|