|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test adam """
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter, context
- from mindspore.common.api import _executor
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.optim import Adam, AdamWeightDecay
- from mindspore.ops import operations as P
-
- @pytest.fixture(scope="module", autouse=True)
- def setup_teardown():
- context.set_context(enable_sparse=True)
- yield
- context.set_context(enable_sparse=False)
-
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self):
- super(Net, self).__init__()
- self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
- self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
- self.matmul = P.MatMul()
- self.biasAdd = P.BiasAdd()
-
- def construct(self, x):
- x = self.biasAdd(self.matmul(x, self.weight), self.bias)
- return x
-
-
- class NetWithoutWeight(nn.Cell):
- def __init__(self):
- super(NetWithoutWeight, self).__init__()
- self.matmul = P.MatMul()
-
- def construct(self, x):
- x = self.matmul(x, x)
- return x
-
-
- class NetWithSparseGatherV2(nn.Cell):
- """ NetWithSparseGatherV2 definition """
- def __init__(self):
- super(NetWithSparseGatherV2, self).__init__()
- self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
- self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2")
- self.axis = 0
- self.gather = P.SparseGatherV2()
-
- def construct(self, indices, label):
- return self.gather(self.weight1, indices, self.axis) + self.weight2
-
-
- def test_adamwithoutparam():
- net = NetWithoutWeight()
- net.set_train()
- with pytest.raises(ValueError, match=r"Optimizer got an empty parameter list"):
- AdamWeightDecay(net.trainable_params(), learning_rate=0.1)
-
-
- def test_adamw_compile():
- """ test_adamw_compile """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
-
- loss = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = AdamWeightDecay(net.trainable_params(), learning_rate=0.1)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_adam_compile():
- """ test adam compile """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
-
- loss = nn.SoftmaxCrossEntropyWithLogits()
- optimizer = Adam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9)
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_sparse_adam_compile():
- """ test_sparse_adam_compile """
- indices = Tensor(np.array([0, 1]).astype(np.int32))
- label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
- net = NetWithSparseGatherV2()
- net.set_train()
-
- optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9)
- optimizer.target = 'CPU'
- train_network = TrainOneStepCell(net, optimizer)
- _executor.compile(train_network, indices, label)
-
-
- def test_sparse_adam():
- """ test_sparse_adam """
- indices = Tensor(np.array([0, 1]).astype(np.int32))
- label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
- net = NetWithSparseGatherV2()
- net.set_train()
-
- optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9)
- train_network = TrainOneStepCell(net, optimizer)
- _executor.compile(train_network, indices, label)
-
-
- def test_adam_group1():
- """ test_adam_group_lr_and_weight_decay """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- net_with_loss = WithLossCell(net, loss)
- all_params = net.trainable_params()
-
- poly_decay_lr = nn.polynomial_decay_lr(0.01, 0.0001, total_step=10, step_per_epoch=1, decay_epoch=3, power=1.0)
-
- group_params = [{'params': [all_params[0]], 'lr': poly_decay_lr, 'weight_decay': 0.9},
- {'params': [all_params[1]]}]
- optimizer = nn.Adam(group_params, learning_rate=0.1)
-
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_adam_group2():
- """ test_adam_group_lr_and_weight_decay """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- net_with_loss = WithLossCell(net, loss)
- all_params = net.trainable_params()
-
- schedule_lr = nn.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0)
- group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9},
- {'params': [all_params[1]]}]
- optimizer = nn.Adam(group_params, learning_rate=schedule_lr)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_adamweightdecay_group():
- """ test_adam_group_lr_and_weight_decay """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- net_with_loss = WithLossCell(net, loss)
- all_params = net.trainable_params()
-
- schedule_lr = nn.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0)
- group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9},
- {'params': [all_params[1]]}]
- optimizer = nn.AdamWeightDecay(group_params, learning_rate=schedule_lr)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_adamoffload_group():
- """ test_adam_group_lr_and_weight_decay """
- inputs = Tensor(np.ones([1, 64]).astype(np.float32))
- label = Tensor(np.zeros([1, 10]).astype(np.float32))
- net = Net()
- net.set_train()
- loss = nn.SoftmaxCrossEntropyWithLogits()
- net_with_loss = WithLossCell(net, loss)
- all_params = net.trainable_params()
-
- schedule_lr = nn.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0)
- group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9},
- {'params': [all_params[1]]}]
- optimizer = nn.AdamOffload(group_params, learning_rate=schedule_lr)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- _executor.compile(train_network, inputs, label)
-
-
- def test_AdamWeightDecay_beta1():
- net = Net()
- print("**********", net.get_parameters())
- with pytest.raises(ValueError):
- AdamWeightDecay(net.get_parameters(), beta1=1.0, learning_rate=0.1)
-
-
- def test_AdamWeightDecay_beta2():
- net = Net()
- with pytest.raises(ValueError):
- AdamWeightDecay(net.get_parameters(), beta2=1.0, learning_rate=0.1)
-
-
- def test_AdamWeightDecay_e():
- net = Net()
- with pytest.raises(ValueError):
- AdamWeightDecay(net.get_parameters(), eps=-0.1, learning_rate=0.1)
-
-
- def test_adam_mindspore_with_empty_params():
- net = nn.Flatten()
- with pytest.raises(ValueError, match=r"Optimizer got an empty parameter list"):
- AdamWeightDecay(net.get_parameters())
|