|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing RandomPerspective op in DE
- """
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.py_transforms
- import mindspore.dataset.vision.py_transforms as py_vision
- from mindspore.dataset.vision.utils import Inter
- from mindspore import log as logger
- from util import visualize_list, save_and_check_md5, \
- config_get_set_seed, config_get_set_num_parallel_workers
-
- GENERATE_GOLDEN = False
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def test_random_perspective_op(plot=False):
- """
- Test RandomPerspective in python transformations
- """
- logger.info("test_random_perspective_op")
- # define map operations
- transforms1 = [
- py_vision.Decode(),
- py_vision.RandomPerspective(),
- py_vision.ToTensor()
- ]
- transform1 = mindspore.dataset.transforms.py_transforms.Compose(transforms1)
-
- transforms2 = [
- py_vision.Decode(),
- py_vision.ToTensor()
- ]
- transform2 = mindspore.dataset.transforms.py_transforms.Compose(transforms2)
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(operations=transform1, input_columns=["image"])
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(operations=transform2, input_columns=["image"])
-
- image_perspective = []
- image_original = []
- for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
- data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
- image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
- image_perspective.append(image1)
- image_original.append(image2)
- if plot:
- visualize_list(image_original, image_perspective)
-
-
- def skip_test_random_perspective_md5():
- """
- Test RandomPerspective with md5 comparison
- """
- logger.info("test_random_perspective_md5")
- original_seed = config_get_set_seed(5)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # define map operations
- transforms = [
- py_vision.Decode(),
- py_vision.RandomPerspective(distortion_scale=0.3, prob=0.7,
- interpolation=Inter.BILINEAR),
- py_vision.Resize(1450), # resize to a smaller size to prevent round-off error
- py_vision.ToTensor()
- ]
- transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
-
- # Generate dataset
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data = data.map(operations=transform, input_columns=["image"])
-
- # check results with md5 comparison
- filename = "random_perspective_01_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore configuration
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers((original_num_parallel_workers))
-
-
- def test_random_perspective_exception_distortion_scale_range():
- """
- Test RandomPerspective: distortion_scale is not in [0, 1], expected to raise ValueError
- """
- logger.info("test_random_perspective_exception_distortion_scale_range")
- try:
- _ = py_vision.RandomPerspective(distortion_scale=1.5)
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input distortion_scale is not within the required interval of [0.0, 1.0]."
-
-
- def test_random_perspective_exception_prob_range():
- """
- Test RandomPerspective: prob is not in [0, 1], expected to raise ValueError
- """
- logger.info("test_random_perspective_exception_prob_range")
- try:
- _ = py_vision.RandomPerspective(prob=1.2)
- except ValueError as e:
- logger.info("Got an exception in DE: {}".format(str(e)))
- assert str(e) == "Input prob is not within the required interval of [0.0, 1.0]."
-
-
- if __name__ == "__main__":
- test_random_perspective_op(plot=True)
- skip_test_random_perspective_md5()
- test_random_perspective_exception_distortion_scale_range()
- test_random_perspective_exception_prob_range()
|