|
- # Copyright 2019-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import pytest
- import mindspore.dataset as ds
- import mindspore.dataset.vision.c_transforms as vision
- from mindspore import log as logger
-
- DATA_DIR = "../data/dataset/testPK/data"
-
-
- def test_imagefolder_basic():
- logger.info("Test Case basic")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDataset(DATA_DIR)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_imagefolder_numsamples():
- logger.info("Test Case numSamples")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDataset(DATA_DIR, num_samples=10, num_parallel_workers=2)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 10
-
- random_sampler = ds.RandomSampler(num_samples=3, replacement=True)
- data1 = ds.ImageFolderDataset(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1):
- num_iter += 1
-
- assert num_iter == 3
-
- random_sampler = ds.RandomSampler(num_samples=3, replacement=False)
- data1 = ds.ImageFolderDataset(DATA_DIR, num_parallel_workers=2, sampler=random_sampler)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1):
- num_iter += 1
-
- assert num_iter == 3
-
-
- def test_imagefolder_numshards():
- logger.info("Test Case numShards")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDataset(DATA_DIR, num_shards=4, shard_id=3)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 11
-
-
- def test_imagefolder_shardid():
- logger.info("Test Case withShardID")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDataset(DATA_DIR, num_shards=4, shard_id=1)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 11
-
-
- def test_imagefolder_noshuffle():
- logger.info("Test Case noShuffle")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDataset(DATA_DIR, shuffle=False)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_imagefolder_extrashuffle():
- logger.info("Test Case extraShuffle")
- # define parameters
- repeat_count = 2
-
- # apply dataset operations
- data1 = ds.ImageFolderDataset(DATA_DIR, shuffle=True)
- data1 = data1.shuffle(buffer_size=5)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 88
-
-
- def test_imagefolder_classindex():
- logger.info("Test Case classIndex")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- class_index = {"class3": 333, "class1": 111}
- data1 = ds.ImageFolderDataset(DATA_DIR, class_indexing=class_index, shuffle=False)
- data1 = data1.repeat(repeat_count)
-
- golden = [111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111,
- 333, 333, 333, 333, 333, 333, 333, 333, 333, 333, 333]
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- assert item["label"] == golden[num_iter]
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 22
-
-
- def test_imagefolder_negative_classindex():
- logger.info("Test Case negative classIndex")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- class_index = {"class3": -333, "class1": 111}
- data1 = ds.ImageFolderDataset(DATA_DIR, class_indexing=class_index, shuffle=False)
- data1 = data1.repeat(repeat_count)
-
- golden = [111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111,
- -333, -333, -333, -333, -333, -333, -333, -333, -333, -333, -333]
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- assert item["label"] == golden[num_iter]
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 22
-
-
- def test_imagefolder_extensions():
- logger.info("Test Case extensions")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- ext = [".jpg", ".JPEG"]
- data1 = ds.ImageFolderDataset(DATA_DIR, extensions=ext)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_imagefolder_decode():
- logger.info("Test Case decode")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- ext = [".jpg", ".JPEG"]
- data1 = ds.ImageFolderDataset(DATA_DIR, extensions=ext, decode=True)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_sequential_sampler():
- logger.info("Test Case SequentialSampler")
-
- golden = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
-
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- sampler = ds.SequentialSampler()
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- result = []
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- result.append(item["label"])
- num_iter += 1
-
- assert num_iter == 44
- logger.info("Result: {}".format(result))
- assert result == golden
-
-
- def test_random_sampler():
- logger.info("Test Case RandomSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- sampler = ds.RandomSampler()
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 44
-
-
- def test_distributed_sampler():
- logger.info("Test Case DistributedSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- sampler = ds.DistributedSampler(10, 1)
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 5
-
-
- def test_pk_sampler():
- logger.info("Test Case PKSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- sampler = ds.PKSampler(3)
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 12
-
-
- def test_subset_random_sampler():
- logger.info("Test Case SubsetRandomSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- indices = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11]
- sampler = ds.SubsetRandomSampler(indices)
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 12
-
-
- def test_weighted_random_sampler():
- logger.info("Test Case WeightedRandomSampler")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- weights = [1.0, 0.1, 0.02, 0.3, 0.4, 0.05, 1.2, 0.13, 0.14, 0.015, 0.16, 1.1]
- sampler = ds.WeightedRandomSampler(weights, 11)
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 11
-
-
- def test_weighted_random_sampler_exception():
- """
- Test error cases for WeightedRandomSampler
- """
- logger.info("Test error cases for WeightedRandomSampler")
- error_msg_1 = "type of weights element must be number"
- with pytest.raises(TypeError, match=error_msg_1):
- weights = ""
- ds.WeightedRandomSampler(weights)
-
- error_msg_2 = "type of weights element must be number"
- with pytest.raises(TypeError, match=error_msg_2):
- weights = (0.9, 0.8, 1.1)
- ds.WeightedRandomSampler(weights)
-
- error_msg_3 = "WeightedRandomSampler: weights vector must not be empty"
- with pytest.raises(RuntimeError, match=error_msg_3):
- weights = []
- sampler = ds.WeightedRandomSampler(weights)
- sampler.parse()
-
- error_msg_4 = "WeightedRandomSampler: weights vector must not contain negative number, got: "
- with pytest.raises(RuntimeError, match=error_msg_4):
- weights = [1.0, 0.1, 0.02, 0.3, -0.4]
- sampler = ds.WeightedRandomSampler(weights)
- sampler.parse()
-
- error_msg_5 = "WeightedRandomSampler: elements of weights vector must not be all zero"
- with pytest.raises(RuntimeError, match=error_msg_5):
- weights = [0, 0, 0, 0, 0]
- sampler = ds.WeightedRandomSampler(weights)
- sampler.parse()
-
-
- def test_chained_sampler_01():
- logger.info("Test Case Chained Sampler - Random and Sequential, with repeat")
-
- # Create chained sampler, random and sequential
- sampler = ds.RandomSampler()
- child_sampler = ds.SequentialSampler()
- sampler.add_child(child_sampler)
- # Create ImageFolderDataset with sampler
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
-
- data1 = data1.repeat(count=3)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 132
-
- # Verify number of iterations
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 132
-
-
- def test_chained_sampler_02():
- logger.info("Test Case Chained Sampler - Random and Sequential, with batch then repeat")
-
- # Create chained sampler, random and sequential
- sampler = ds.RandomSampler()
- child_sampler = ds.SequentialSampler()
- sampler.add_child(child_sampler)
- # Create ImageFolderDataset with sampler
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
-
- data1 = data1.batch(batch_size=5, drop_remainder=True)
- data1 = data1.repeat(count=2)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 16
-
- # Verify number of iterations
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 16
-
-
- def test_chained_sampler_03():
- logger.info("Test Case Chained Sampler - Random and Sequential, with repeat then batch")
-
- # Create chained sampler, random and sequential
- sampler = ds.RandomSampler()
- child_sampler = ds.SequentialSampler()
- sampler.add_child(child_sampler)
- # Create ImageFolderDataset with sampler
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
-
- data1 = data1.repeat(count=2)
- data1 = data1.batch(batch_size=5, drop_remainder=False)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 18
-
- # Verify number of iterations
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 18
-
-
- def test_chained_sampler_04():
- logger.info("Test Case Chained Sampler - Distributed and Random, with batch then repeat")
-
- # Create chained sampler, distributed and random
- sampler = ds.DistributedSampler(num_shards=4, shard_id=3)
- child_sampler = ds.RandomSampler()
- sampler.add_child(child_sampler)
- # Create ImageFolderDataset with sampler
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
-
- data1 = data1.batch(batch_size=5, drop_remainder=True)
- data1 = data1.repeat(count=3)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 6
-
- # Verify number of iterations
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- # Note: Each of the 4 shards has 44/4=11 samples
- # Note: Number of iterations is (11/5 = 2) * 3 = 6
- assert num_iter == 6
-
-
- def skip_test_chained_sampler_05():
- logger.info("Test Case Chained Sampler - PKSampler and WeightedRandom")
-
- # Create chained sampler, PKSampler and WeightedRandom
- sampler = ds.PKSampler(num_val=3) # Number of elements per class is 3 (and there are 4 classes)
- weights = [1.0, 0.1, 0.02, 0.3, 0.4, 0.05, 1.2, 0.13, 0.14, 0.015, 0.16, 0.5]
- child_sampler = ds.WeightedRandomSampler(weights, num_samples=12)
- sampler.add_child(child_sampler)
- # Create ImageFolderDataset with sampler
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 12
-
- # Verify number of iterations
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- # Note: PKSampler produces 4x3=12 samples
- # Note: Child WeightedRandomSampler produces 12 samples
- assert num_iter == 12
-
-
- def test_chained_sampler_06():
- logger.info("Test Case Chained Sampler - WeightedRandom and PKSampler")
-
- # Create chained sampler, WeightedRandom and PKSampler
- weights = [1.0, 0.1, 0.02, 0.3, 0.4, 0.05, 1.2, 0.13, 0.14, 0.015, 0.16, 0.5]
- sampler = ds.WeightedRandomSampler(weights=weights, num_samples=12)
- child_sampler = ds.PKSampler(num_val=3) # Number of elements per class is 3 (and there are 4 classes)
- sampler.add_child(child_sampler)
- # Create ImageFolderDataset with sampler
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 12
-
- # Verify number of iterations
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- # Note: WeightedRandomSampler produces 12 samples
- # Note: Child PKSampler produces 12 samples
- assert num_iter == 12
-
-
- def test_chained_sampler_07():
- logger.info("Test Case Chained Sampler - SubsetRandom and Distributed, 2 shards")
-
- # Create chained sampler, subset random and distributed
- indices = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11]
- sampler = ds.SubsetRandomSampler(indices, num_samples=12)
- child_sampler = ds.DistributedSampler(num_shards=2, shard_id=1)
- sampler.add_child(child_sampler)
- # Create ImageFolderDataset with sampler
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 12
-
- # Verify number of iterations
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- # Note: SubsetRandomSampler produces 12 samples
- # Note: Each of 2 shards has 6 samples
- # FIXME: Uncomment the following assert when code issue is resolved; at runtime, number of samples is 12 not 6
- # assert num_iter == 6
-
-
- def skip_test_chained_sampler_08():
- logger.info("Test Case Chained Sampler - SubsetRandom and Distributed, 4 shards")
-
- # Create chained sampler, subset random and distributed
- indices = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11]
- sampler = ds.SubsetRandomSampler(indices, num_samples=12)
- child_sampler = ds.DistributedSampler(num_shards=4, shard_id=1)
- sampler.add_child(child_sampler)
- # Create ImageFolderDataset with sampler
- data1 = ds.ImageFolderDataset(DATA_DIR, sampler=sampler)
-
- # Verify dataset size
- data1_size = data1.get_dataset_size()
- logger.info("dataset size is: {}".format(data1_size))
- assert data1_size == 3
-
- # Verify number of iterations
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- # Note: SubsetRandomSampler returns 12 samples
- # Note: Each of 4 shards has 3 samples
- assert num_iter == 3
-
-
- def test_imagefolder_rename():
- logger.info("Test Case rename")
- # define parameters
- repeat_count = 1
-
- # apply dataset operations
- data1 = ds.ImageFolderDataset(DATA_DIR, num_samples=10)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 10
-
- data1 = data1.rename(input_columns=["image"], output_columns="image2")
-
- num_iter = 0
- for item in data1.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image2"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 10
-
-
- def test_imagefolder_zip():
- logger.info("Test Case zip")
- # define parameters
- repeat_count = 2
-
- # apply dataset operations
- data1 = ds.ImageFolderDataset(DATA_DIR, num_samples=10)
- data2 = ds.ImageFolderDataset(DATA_DIR, num_samples=10)
-
- data1 = data1.repeat(repeat_count)
- # rename dataset2 for no conflict
- data2 = data2.rename(input_columns=["image", "label"], output_columns=["image1", "label1"])
- data3 = ds.zip((data1, data2))
-
- num_iter = 0
- for item in data3.create_dict_iterator(num_epochs=1): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is {}".format(item["image"]))
- logger.info("label is {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
- assert num_iter == 10
-
-
- def test_imagefolder_exception():
- logger.info("Test imagefolder exception")
-
- def exception_func(item):
- raise Exception("Error occur!")
-
- def exception_func2(image, label):
- raise Exception("Error occur!")
-
- try:
- data = ds.ImageFolderDataset(DATA_DIR)
- data = data.map(operations=exception_func, input_columns=["image"], num_parallel_workers=1)
- for _ in data.__iter__():
- pass
- assert False
- except RuntimeError as e:
- assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
-
- try:
- data = ds.ImageFolderDataset(DATA_DIR)
- data = data.map(operations=exception_func2, input_columns=["image", "label"],
- output_columns=["image", "label", "label1"],
- column_order=["image", "label", "label1"], num_parallel_workers=1)
- for _ in data.__iter__():
- pass
- assert False
- except RuntimeError as e:
- assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
-
- try:
- data = ds.ImageFolderDataset(DATA_DIR)
- data = data.map(operations=vision.Decode(), input_columns=["image"], num_parallel_workers=1)
- data = data.map(operations=exception_func, input_columns=["image"], num_parallel_workers=1)
- for _ in data.__iter__():
- pass
- assert False
- except RuntimeError as e:
- assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
-
-
- if __name__ == '__main__':
- test_imagefolder_basic()
- logger.info('test_imagefolder_basic Ended.\n')
-
- test_imagefolder_numsamples()
- logger.info('test_imagefolder_numsamples Ended.\n')
-
- test_sequential_sampler()
- logger.info('test_sequential_sampler Ended.\n')
-
- test_random_sampler()
- logger.info('test_random_sampler Ended.\n')
-
- test_distributed_sampler()
- logger.info('test_distributed_sampler Ended.\n')
-
- test_pk_sampler()
- logger.info('test_pk_sampler Ended.\n')
-
- test_subset_random_sampler()
- logger.info('test_subset_random_sampler Ended.\n')
-
- test_weighted_random_sampler()
- logger.info('test_weighted_random_sampler Ended.\n')
-
- test_weighted_random_sampler_exception()
- logger.info('test_weighted_random_sampler_exception Ended.\n')
-
- test_chained_sampler_01()
- logger.info('test_chained_sampler_01 Ended.\n')
-
- test_chained_sampler_02()
- logger.info('test_chained_sampler_02 Ended.\n')
-
- test_chained_sampler_03()
- logger.info('test_chained_sampler_03 Ended.\n')
-
- test_chained_sampler_04()
- logger.info('test_chained_sampler_04 Ended.\n')
-
- # test_chained_sampler_05()
- # logger.info('test_chained_sampler_05 Ended.\n')
-
- test_chained_sampler_06()
- logger.info('test_chained_sampler_06 Ended.\n')
-
- test_chained_sampler_07()
- logger.info('test_chained_sampler_07 Ended.\n')
-
- # test_chained_sampler_08()
- # logger.info('test_chained_sampler_07 Ended.\n')
-
- test_imagefolder_numshards()
- logger.info('test_imagefolder_numshards Ended.\n')
-
- test_imagefolder_shardid()
- logger.info('test_imagefolder_shardid Ended.\n')
-
- test_imagefolder_noshuffle()
- logger.info('test_imagefolder_noshuffle Ended.\n')
-
- test_imagefolder_extrashuffle()
- logger.info('test_imagefolder_extrashuffle Ended.\n')
-
- test_imagefolder_classindex()
- logger.info('test_imagefolder_classindex Ended.\n')
-
- test_imagefolder_negative_classindex()
- logger.info('test_imagefolder_negative_classindex Ended.\n')
-
- test_imagefolder_extensions()
- logger.info('test_imagefolder_extensions Ended.\n')
-
- test_imagefolder_decode()
- logger.info('test_imagefolder_decode Ended.\n')
-
- test_imagefolder_rename()
- logger.info('test_imagefolder_rename Ended.\n')
-
- test_imagefolder_zip()
- logger.info('test_imagefolder_zip Ended.\n')
-
- test_imagefolder_exception()
- logger.info('test_imagefolder_exception Ended.\n')
|