|
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <vector>
- #include <memory>
- #include "common/common_test.h"
- #include "ops/merge.h"
- #include "ir/dtype/type.h"
- #include "ir/value.h"
- #include "abstract/dshape.h"
- #include "utils/tensor_construct_utils.h"
-
- namespace mindspore {
- namespace ops {
-
- class TestMerge : public UT::Common {
- public:
- TestMerge() {}
- void SetUp() {}
- void TearDown() {}
- };
-
- TEST_F(TestMerge, test_ops_merge1) {
- auto merge = std::make_shared<Merge>();
- merge->Init();
- auto input_x = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{2, 4});
- auto input_y = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{2, 4});
- MS_EXCEPTION_IF_NULL(input_x);
- MS_EXCEPTION_IF_NULL(input_y);
- std::vector<ValuePtr> inputs_ = {input_x, input_y};
- auto input = std::make_shared<ValueTuple>(inputs_);
- auto abstract = merge->Infer({input->ToAbstract()});
- MS_EXCEPTION_IF_NULL(abstract);
- auto shape_ptr = abstract->BuildShape();
- MS_EXCEPTION_IF_NULL(shape_ptr);
- EXPECT_EQ(shape_ptr->isa<abstract::TupleShape>(), true);
- auto shape = shape_ptr->cast<abstract::TupleShapePtr>();
- MS_EXCEPTION_IF_NULL(shape);
- auto shape_vec = shape->shape();
- EXPECT_EQ(shape_vec.size(), 2);
- auto shape1 = shape_vec[0]->cast<abstract::ShapePtr>()->shape();
- EXPECT_EQ(shape1.size(), 2);
- EXPECT_EQ(shape1[0], 2);
- EXPECT_EQ(shape1[1], 4);
- auto shape2 = shape_vec[1]->cast<abstract::ShapePtr>()->shape();
- EXPECT_EQ(shape2.size(), 1);
- EXPECT_EQ(shape2[0], 1);
- auto type_ptr = abstract->BuildType();
- MS_EXCEPTION_IF_NULL(type_ptr);
- auto type = type_ptr->cast<TuplePtr>();
- auto type_vec = type->elements();
- MS_EXCEPTION_IF_NULL(type_vec[0]);
- auto data_type1 = type_vec[0]->cast<TensorTypePtr>()->element();
- MS_EXCEPTION_IF_NULL(data_type1);
- EXPECT_EQ(data_type1->type_id(), kNumberTypeFloat32);
- auto data_type2 = type_vec[1]->cast<TensorTypePtr>()->element();
- MS_EXCEPTION_IF_NULL(data_type2);
- EXPECT_EQ(data_type2->type_id(), kNumberTypeInt32);
- }
-
- } // namespace ops
- } // namespace mindspore
|