|
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <vector>
- #include <memory>
- #include "common/common_test.h"
- #include "ops/conv2d.h"
- #include "ir/dtype/type.h"
- #include "abstract/dshape.h"
- #include "utils/tensor_construct_utils.h"
- namespace mindspore {
- namespace ops {
- class TestConv2d : public UT::Common {
- public:
- TestConv2d() {}
- void SetUp() {}
- void TearDown() {}
- };
-
- TEST_F(TestConv2d, test_ops_conv2d) {
- auto conv_2d = std::make_shared<Conv2D>();
- conv_2d->Init(64, {7, 7});
- std::vector<int64_t> kernel_size = conv_2d->get_kernel_size();
- for (auto item : kernel_size) {
- EXPECT_EQ(item, 7);
- }
- std::vector<int64_t> stride = conv_2d->get_stride();
- for (auto item : stride) {
- EXPECT_EQ(item, 1);
- }
- std::vector<int64_t> dilation = conv_2d->get_dilation();
- for (auto item : dilation) {
- EXPECT_EQ(item, 1);
- }
- EXPECT_EQ(conv_2d->get_pad_mode(), VALID);
- std::vector<int64_t> pad = conv_2d->get_pad();
- for (auto item : pad) {
- EXPECT_EQ(item, 0);
- }
- EXPECT_EQ(conv_2d->get_mode(), 1);
- EXPECT_EQ(conv_2d->get_group(), 1);
- EXPECT_EQ(conv_2d->get_out_channel(), 64);
- EXPECT_EQ(conv_2d->get_format(), NCHW);
- auto tensor_x = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{32, 3, 224, 224});
- auto tensor_w = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, std::vector<int64_t>{64, 3, 7, 7});
- MS_EXCEPTION_IF_NULL(tensor_x);
- MS_EXCEPTION_IF_NULL(tensor_w);
- auto conv_abstract = conv_2d->Infer({tensor_x->ToAbstract(), tensor_w->ToAbstract()});
- MS_EXCEPTION_IF_NULL(conv_abstract);
- EXPECT_EQ(conv_abstract->isa<abstract::AbstractTensor>(), true);
- auto shape_ptr = conv_abstract->BuildShape();
- MS_EXCEPTION_IF_NULL(shape_ptr);
- EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
- auto conv_shape = shape_ptr->cast<abstract::ShapePtr>();
- MS_EXCEPTION_IF_NULL(conv_shape);
- auto shape_vec = conv_shape->shape();
- auto type = conv_abstract->BuildType();
- MS_EXCEPTION_IF_NULL(type);
- EXPECT_EQ(type->isa<TensorType>(), true);
- auto tensor_type = type->cast<TensorTypePtr>();
- MS_EXCEPTION_IF_NULL(tensor_type);
- auto elem_type = tensor_type->element();
- EXPECT_EQ(elem_type->type_id(), kNumberTypeFloat32);
- EXPECT_EQ(shape_vec.size(), 4);
- EXPECT_EQ(shape_vec[0], 32);
- EXPECT_EQ(shape_vec[1], 64);
- EXPECT_EQ(shape_vec[2], 218);
- EXPECT_EQ(shape_vec[3], 218);
- }
-
- } // namespace ops
- } // namespace mindspore
|