|
- /**
- * Copyright 2019-2021 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "minddata/dataset/core/client.h"
- #include "common/common.h"
- #include "utils/ms_utils.h"
- #include "gtest/gtest.h"
- #include "utils/log_adapter.h"
- #include <memory>
- #include <vector>
- #include <iostream>
-
- namespace common = mindspore::common;
-
- using namespace mindspore::dataset;
- using mindspore::MsLogLevel::INFO;
- using mindspore::ExceptionType::NoExceptionType;
- using mindspore::LogStream;
-
- class MindDataTestShuffleOp : public UT::DatasetOpTesting {
-
- };
-
-
- // Test info:
- // - Dataset from testDataset1 has 10 rows, 2 columns.
- // - RowsPerBuffer buffer setting of 2 divides evenly into total rows.
- // - Shuffle size is multiple of rows per buffer.
- //
- // Tree: shuffle over TFReader
- //
- // ShuffleOp
- // |
- // TFReaderOp
- //
- TEST_F(MindDataTestShuffleOp, TestShuffleBasic1) {
- Status rc;
- MS_LOG(INFO) << "UT test TestShuffleBasic1.";
-
- // Start with an empty execution tree
- auto my_tree = std::make_shared<ExecutionTree>();
-
- std::string dataset_path;
- dataset_path = datasets_root_path_ + "/testDataset1/testDataset1.data";
- std::shared_ptr<TFReaderOp> my_tfreader_op;
- rc = TFReaderOp::Builder()
- .SetDatasetFilesList({dataset_path})
-
- .SetWorkerConnectorSize(16)
- .SetNumWorkers(1)
- .Build(&my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssociateNode(my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- std::shared_ptr<ShuffleOp> my_shuffle_op;
- rc = ShuffleOp::Builder().SetShuffleSize(4).Build(&my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssociateNode(my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
-
- // Set children/root layout.
- rc = my_shuffle_op->AddChild(my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssignRoot(my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
- MS_LOG(INFO) << "Launching tree and begin iteration.";
- rc = my_tree->Prepare();
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->Launch();
- EXPECT_TRUE(rc.IsOk());
-
- // Start the loop of reading tensors from our pipeline
- DatasetIterator di(my_tree);
- TensorRow tensor_list;
- rc = di.FetchNextTensorRow(&tensor_list);
- EXPECT_TRUE(rc.IsOk());
-
- int row_count = 0;
- while (!tensor_list.empty()) {
- MS_LOG(INFO) << "Row display for row #: " << row_count << ".";
-
- // Display the tensor by calling the printer on it
- for (int i = 0; i < tensor_list.size(); i++) {
- std::ostringstream ss;
- ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
- MS_LOG(INFO) << "Tensor print: " << ss.str() << ".";
- }
- rc = di.FetchNextTensorRow(&tensor_list);
- EXPECT_TRUE(rc.IsOk());
- row_count++;
- }
- ASSERT_EQ(row_count, 10);
-
- }
-
- // Test info:
- // - Dataset from testDataset1 has 10 rows, 2 columns.
- // - RowsPerBuffer buffer setting of 3 does not divide evenly into total rows, thereby causing
- // partially filled buffers.
- // - Shuffle size is not a multiple of rows per buffer.
- // - User has provided a non-default seed value.
- //
- // Tree: shuffle over TFReader
- //
- // ShuffleOp
- // |
- // TFReaderOp
- //
- TEST_F(MindDataTestShuffleOp, TestShuffleBasic2) {
- Status rc;
- MS_LOG(INFO) << "UT test TestShuffleBasic2.";
-
- // Start with an empty execution tree
- auto my_tree = std::make_shared<ExecutionTree>();
-
- std::string dataset_path;
- dataset_path = datasets_root_path_ + "/testDataset1/testDataset1.data";
- std::shared_ptr<TFReaderOp> my_tfreader_op;
- rc = TFReaderOp::Builder()
- .SetDatasetFilesList({dataset_path})
- .SetWorkerConnectorSize(16)
- .SetNumWorkers(2)
- .Build(&my_tfreader_op);
- ASSERT_TRUE(rc.IsOk());
- rc = my_tree->AssociateNode(my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- std::shared_ptr<ShuffleOp> my_shuffle_op;
- rc = ShuffleOp::Builder().SetShuffleSize(4).SetShuffleSeed(100).Build(&my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssociateNode(my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
-
- // Set children/root layout.
- rc = my_shuffle_op->AddChild(my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssignRoot(my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
- MS_LOG(INFO) << "Launching tree and begin iteration.";
- rc = my_tree->Prepare();
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->Launch();
- EXPECT_TRUE(rc.IsOk());
-
- // Start the loop of reading tensors from our pipeline
- DatasetIterator di(my_tree);
- TensorRow tensor_list;
- rc = di.FetchNextTensorRow(&tensor_list);
- EXPECT_TRUE(rc.IsOk());
- int row_count = 0;
- while (!tensor_list.empty()) {
- MS_LOG(INFO) << "Row display for row #: " << row_count << ".";
-
- // Display the tensor by calling the printer on it
- for (int i = 0; i < tensor_list.size(); i++) {
- std::ostringstream ss;
- ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
- MS_LOG(INFO) << "Tensor print: " << ss.str() << ".";
- }
- rc = di.FetchNextTensorRow(&tensor_list);
- EXPECT_TRUE(rc.IsOk());
- row_count++;
- }
- ASSERT_EQ(row_count, 10);
- }
-
- // Test info:
- // - Dataset from testDataset1 has 10 rows, 2 columns.
- // - RowsPerBuffer buffer setting of 3 does not divide evenly into total rows, thereby causing
- // partially filled buffers
- // - Shuffle size captures the entire dataset size (actually sets a value that is larger than the
- // amount of rows in the dataset.
- //
- // Tree: shuffle over TFReader
- //
- // ShuffleOp
- // |
- // TFReaderOp
- //
- TEST_F(MindDataTestShuffleOp, TestShuffleBasic3) {
- Status rc;
- MS_LOG(INFO) << "UT test TestShuffleBasic3.";
-
- // Start with an empty execution tree
- auto my_tree = std::make_shared<ExecutionTree>();
-
- std::string dataset_path;
- dataset_path = datasets_root_path_ + "/testDataset1/testDataset1.data";
- std::shared_ptr<TFReaderOp> my_tfreader_op;
- rc = TFReaderOp::Builder()
- .SetDatasetFilesList({dataset_path})
- .SetWorkerConnectorSize(16)
- .SetNumWorkers(2)
- .Build(&my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- my_tree->AssociateNode(my_tfreader_op);
- std::shared_ptr<ShuffleOp> my_shuffle_op;
- rc = ShuffleOp::Builder().SetShuffleSize(100).Build(&my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssociateNode(my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
-
- // Set children/root layout.
- rc = my_shuffle_op->AddChild(my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssignRoot(my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
- MS_LOG(INFO) << "Launching tree and begin iteration.";
- rc = my_tree->Prepare();
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->Launch();
- EXPECT_TRUE(rc.IsOk());
-
- // Start the loop of reading tensors from our pipeline
- DatasetIterator di(my_tree);
- TensorRow tensor_list;
- rc = di.FetchNextTensorRow(&tensor_list);
- EXPECT_TRUE(rc.IsOk());
- int row_count = 0;
- while (!tensor_list.empty()) {
- MS_LOG(INFO) << "Row display for row #: " << row_count << ".";
-
- // Display the tensor by calling the printer on it
- for (int i = 0; i < tensor_list.size(); i++) {
- std::ostringstream ss;
- ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
- MS_LOG(INFO) << "Tensor print: " << common::SafeCStr(ss.str()) << ".";
- }
- rc = di.FetchNextTensorRow(&tensor_list);
- EXPECT_TRUE(rc.IsOk());
- row_count++;
- }
- ASSERT_EQ(row_count, 10);
- }
-
-
- // Test info:
- // - Dataset from testDataset1 has 10 rows, 2 columns.
- // - RowsPerBuffer buffer setting of 3 does not divide evenly into total rows thereby causing
- // partially filled buffers
- // - Shuffle size is not a multiple of rows per buffer.
- // - shuffle seed is given, and subsequent epochs will change the seed each time.
- // - Repeat count of 2
- //
- // Tree: Repeat over shuffle over TFReader
- //
- // Repeat
- // |
- // shuffle
- // |
- // TFReaderOp
- //
- TEST_F(MindDataTestShuffleOp, TestRepeatShuffle) {
- Status rc;
- MS_LOG(INFO) << "UT test TestRepeatShuffle.";
-
- // Start with an empty execution tree
- auto my_tree = std::make_shared<ExecutionTree>();
-
- std::string dataset_path;
- dataset_path = datasets_root_path_ + "/testDataset1/testDataset1.data";
- std::shared_ptr<TFReaderOp> my_tfreader_op;
- rc = TFReaderOp::Builder()
- .SetDatasetFilesList({dataset_path})
- .SetWorkerConnectorSize(16)
- .SetNumWorkers(2)
- .Build(&my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssociateNode(my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- std::shared_ptr<ShuffleOp> my_shuffle_op;
- rc = ShuffleOp::Builder()
- .SetShuffleSize(4)
- .SetShuffleSeed(100)
- .SetReshuffleEachEpoch(true)
- .Build(&my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssociateNode(my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
- uint32_t numRepeats = 2;
- std::shared_ptr<RepeatOp> my_repeat_op;
- rc = RepeatOp::Builder(numRepeats).Build(&my_repeat_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssociateNode(my_repeat_op);
- EXPECT_TRUE(rc.IsOk());
-
- // Set children/root layout.
- my_shuffle_op->set_total_repeats(numRepeats);
- my_shuffle_op->set_num_repeats_per_epoch(numRepeats);
- rc = my_repeat_op->AddChild(my_shuffle_op);
- EXPECT_TRUE(rc.IsOk());
- my_tfreader_op->set_total_repeats(numRepeats);
- my_tfreader_op->set_num_repeats_per_epoch(numRepeats);
- rc = my_shuffle_op->AddChild(my_tfreader_op);
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->AssignRoot(my_repeat_op);
- EXPECT_TRUE(rc.IsOk());
- MS_LOG(INFO) << "Launching tree and begin iteration.";
- rc = my_tree->Prepare();
- EXPECT_TRUE(rc.IsOk());
- rc = my_tree->Launch();
- EXPECT_TRUE(rc.IsOk());
-
- // Start the loop of reading tensors from our pipeline
- DatasetIterator di(my_tree);
- TensorRow tensor_list;
- rc = di.FetchNextTensorRow(&tensor_list);
- EXPECT_TRUE(rc.IsOk());
- int row_count = 0;
- while (!tensor_list.empty()) {
- MS_LOG(INFO) << "Row display for row #: " << row_count << ".";
-
- // Display the tensor by calling the printer on it
- for (int i = 0; i < tensor_list.size(); i++) {
- std::ostringstream ss;
- ss << *tensor_list[i] << std::endl;
- MS_LOG(INFO) << "Tensor print: " << common::SafeCStr(ss.str()) << ".";
- }
- rc = di.FetchNextTensorRow(&tensor_list);
- EXPECT_TRUE(rc.IsOk());
- row_count++;
- }
- ASSERT_EQ(row_count, 20);
- }
|