|
- /**
- * Copyright 2021 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "common/cvop_common.h"
- #include "minddata/dataset/core/cv_tensor.h"
- #include "minddata/dataset/kernels/image/affine_op.h"
- #include "minddata/dataset/kernels/image/math_utils.h"
- #include <opencv2/opencv.hpp>
- #include <opencv2/imgproc/types_c.h>
- #include "lite_cv/lite_mat.h"
- #include "lite_cv/image_process.h"
-
- using namespace mindspore::dataset;
- using mindspore::dataset::InterpolationMode;
-
- class MindDataTestAffineOp : public UT::CVOP::CVOpCommon {
- public:
- MindDataTestAffineOp() : CVOpCommon() {}
- };
-
- // Helper function, consider moving this to helper class for UT
- double Mse(cv::Mat img1, cv::Mat img2) {
- // clone to get around open cv optimization
- cv::Mat output1 = img1.clone();
- cv::Mat output2 = img2.clone();
-
- // input check
- if (output1.rows < 0 || output1.rows != output2.rows || output1.cols < 0 || output1.cols != output2.cols) {
- return 10000.0;
- }
- return cv::norm(output1, output2, cv::NORM_L1);
- }
-
- // helper function to generate corresponding affine matrix
- std::vector<double> GenerateMatrix(const std::shared_ptr<Tensor> &input, float_t degrees,
- const std::vector<float_t> &translation, float_t scale,
- const std::vector<float_t> &shear) {
- float_t translation_x = translation[0];
- float_t translation_y = translation[1];
- DegreesToRadians(degrees, °rees);
- float_t shear_x = shear[0];
- float_t shear_y = shear[1];
- DegreesToRadians(shear_x, &shear_x);
- DegreesToRadians(-1 * shear_y, &shear_y);
- float_t cx = ((input->shape()[1] - 1) / 2.0);
- float_t cy = ((input->shape()[0] - 1) / 2.0);
- // Calculate RSS
- std::vector<double> matrix{
- static_cast<double>(scale * cos(degrees + shear_y) / cos(shear_y)),
- static_cast<double>(scale * (-1 * cos(degrees + shear_y) * tan(shear_x) / cos(shear_y) - sin(degrees))),
- 0,
- static_cast<double>(scale * sin(degrees + shear_y) / cos(shear_y)),
- static_cast<double>(scale * (-1 * sin(degrees + shear_y) * tan(shear_x) / cos(shear_y) + cos(degrees))),
- 0};
- // Compute T * C * RSS * C^-1
- matrix[2] = (1 - matrix[0]) * cx - matrix[1] * cy + translation_x;
- matrix[5] = (1 - matrix[4]) * cy - matrix[3] * cx + translation_y;
- return matrix;
- }
-
- TEST_F(MindDataTestAffineOp, TestAffineLite) {
- MS_LOG(INFO) << "Doing MindDataTestAffine-TestAffineLite.";
-
- // create input tensor and
- float degree = 0.0;
- std::vector<float> translation = {0.0, 0.0};
- float scale = 0.0;
- std::vector<float> shear = {0.0, 0.0};
-
- // Create affine object with default values
- std::shared_ptr<AffineOp> op(new AffineOp(degree, translation, scale, shear, InterpolationMode::kLinear));
- // output tensor
- std::shared_ptr<Tensor> output_tensor;
-
- // output
- LiteMat dst;
- LiteMat lite_mat_rgb(input_tensor_->shape()[1], input_tensor_->shape()[0], input_tensor_->shape()[2],
- const_cast<void *>(reinterpret_cast<const void *>(input_tensor_->GetBuffer())),
- LDataType::UINT8);
-
- std::vector<double> matrix = GenerateMatrix(input_tensor_, degree, translation, scale, shear);
-
- int height = lite_mat_rgb.height_;
- int width = lite_mat_rgb.width_;
- std::vector<size_t> dsize;
- dsize.push_back(width);
- dsize.push_back(height);
- double M[6] = {};
- for (int i = 0; i < matrix.size(); i++) {
- M[i] = static_cast<double>(matrix[i]);
- }
-
- EXPECT_TRUE(Affine(lite_mat_rgb, dst, M, dsize, UINT8_C3(0, 0, 0)));
- Status s = op->Compute(input_tensor_, &output_tensor);
- EXPECT_TRUE(s.IsOk());
- // output tensor is a cv tenosr, we can compare mat values
- cv::Mat lite_cv_out(dst.height_, dst.width_, CV_8UC3, dst.data_ptr_);
- double mse = Mse(lite_cv_out, CVTensor(output_tensor).mat());
- MS_LOG(INFO) << "mse: " << std::to_string(mse) << std::endl;
- EXPECT_LT(mse, 1); // predetermined magic number
- }
|