|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """pooling"""
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore._checkparam import Validator as validator
- from mindspore.ops.primitive import constexpr
- from ... import context
- from ..cell import Cell
- from ..._checkparam import Rel
-
-
- class _PoolNd(Cell):
- """N-D AvgPool"""
-
- def __init__(self, kernel_size, stride, pad_mode):
- super(_PoolNd, self).__init__()
- self.pad_mode = validator.check_string('pad_mode', pad_mode.upper(), ['VALID', 'SAME'], self.cls_name)
-
- def _check_int_or_tuple(arg_name, arg_value):
- validator.check_value_type(arg_name, arg_value, [int, tuple], self.cls_name)
- error_msg = f'For \'{self.cls_name}\' the {arg_name} should be an positive int number or ' \
- f'a tuple of two positive int numbers, but got {arg_value}'
- if isinstance(arg_value, int):
- if arg_value <= 0:
- raise ValueError(error_msg)
- elif len(arg_value) == 2:
- for item in arg_value:
- if isinstance(item, int) and item > 0:
- continue
- raise ValueError(error_msg)
- else:
- raise ValueError(error_msg)
- return arg_value
-
- self.kernel_size = _check_int_or_tuple('kernel_size', kernel_size)
- self.stride = _check_int_or_tuple('stride', stride)
-
- def construct(self, *inputs):
- pass
-
- def extend_repr(self):
- return 'kernel_size={kernel_size}, stride={stride}, pad_mode={pad_mode}'.format(**self.__dict__)
- @constexpr
- def _shape_check(in_shape):
- if len(in_shape) != 3:
- raise ValueError("The input must has 3 dim")
-
- class MaxPool2d(_PoolNd):
- r"""
- Max pooling operation for temporal data.
-
- Applies a 2D max pooling over an input Tensor which can be regarded as a composition of 2D planes.
-
- Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool2d outputs
- regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
- :math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows.
-
- .. math::
- \text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
- \text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
-
- Note:
- pad_mode for training only supports "same" and "valid".
-
- Args:
- kernel_size (Union[int, tuple[int]]): The size of kernel used to take the max value,
- is an int number that represents height and width are both kernel_size,
- or a tuple of two int numbers that represent height and width respectively.
- Default: 1.
- stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
- the height and width of movement are both strides, or a tuple of two int numbers that
- represent height and width of movement respectively. Default: 1.
- pad_mode (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
- Default: "valid".
-
- - same: Adopts the way of completion. Output height and width will be the same as
- the input. Total number of padding will be calculated for horizontal and vertical
- direction and evenly distributed to top and bottom, left and right if possible.
- Otherwise, the last extra padding will be done from the bottom and the right side.
-
- - valid: Adopts the way of discarding. The possibly largest height and width of output
- will be return without padding. Extra pixels will be discarded.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
-
- Outputs:
- Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
-
- Examples:
- >>> pool = nn.MaxPool2d(kernel_size=3, stride=1)
- >>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
- [[[[1. 5. 5. 1.]
- [0. 3. 4. 8.]
- [4. 2. 7. 6.]
- [4. 9. 0. 1.]]
- [[3. 6. 2. 6.]
- [4. 4. 7. 8.]
- [0. 0. 4. 0.]
- [1. 8. 7. 0.]]]]
- >>> output = pool(x)
- >>> output.shape()
- (1, 2, 2, 2)
- >>> output
- [[[[7. 8.]
- [9. 9.]]
- [[7. 8.]
- [8. 8.]]]]
- """
-
- def __init__(self, kernel_size=1, stride=1, pad_mode="valid"):
- super(MaxPool2d, self).__init__(kernel_size, stride, pad_mode)
- self.max_pool = P.MaxPool(ksize=self.kernel_size,
- strides=self.stride,
- padding=self.pad_mode)
- self.max_pool_with_arg_max = P.MaxPoolWithArgmax(ksize=self.kernel_size,
- strides=self.stride,
- padding=self.pad_mode)
- self.is_tbe = context.get_context("device_target") == "Ascend"
-
- def construct(self, x):
- if self.is_tbe and self.training:
- out = self.max_pool_with_arg_max(x)[0]
- else:
- out = self.max_pool(x)
- return out
-
-
- class AvgPool2d(_PoolNd):
- r"""
- Average pooling for temporal data.
-
- Applies a 2D average pooling over an input Tensor which can be regarded as a composition of 2D input planes.
-
- Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, AvgPool2d outputs
- regional average in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
- :math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows.
-
- .. math::
- \text{output}(N_i, C_j, h, w) = \frac{1}{h_{ker} * w_{ker}} \sum_{m=0}^{h_{ker}-1} \sum_{n=0}^{w_{ker}-1}
- \text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
-
- Note:
- pad_mode for training only supports "same" and "valid".
-
- Args:
- kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value,
- is an int number that represents height and width are both kernel_size,
- or a tuple of two int numbers that represent height and width respectively.
- Default: 1.
- stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
- the height and width of movement are both strides, or a tuple of two int numbers that
- represent height and width of movement respectively. Default: 1.
- pad_mode (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
- Default: "valid".
-
- - same: Adopts the way of completion. Output height and width will be the same as
- the input. Total number of padding will be calculated for horizontal and vertical
- direction and evenly distributed to top and bottom, left and right if possible.
- Otherwise, the last extra padding will be done from the bottom and the right side.
-
- - valid: Adopts the way of discarding. The possibly largest height and width of output
- will be return without padding. Extra pixels will be discarded.
-
-
- Inputs:
- - **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
-
- Outputs:
- Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
-
- Examples:
- >>> pool = nn.AvgPool2d(kernel_size=3, strides=1)
- >>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
- [[[[5. 5. 9. 9.]
- [8. 4. 3. 0.]
- [2. 7. 1. 2.]
- [1. 8. 3. 3.]]
- [[6. 8. 2. 4.]
- [3. 0. 2. 1.]
- [0. 8. 9. 7.]
- [2. 1. 4. 9.]]]]
- >>> output = pool(x)
- >>> output.shape()
- (1, 2, 2, 2)
- >>> output
- [[[[4.888889 4.4444447]
- [4.111111 3.4444444]]
- [[4.2222223 4.5555553]
- [3.2222223 4.5555553]]]]
- """
-
- def __init__(self,
- kernel_size=1,
- stride=1,
- pad_mode="valid"):
- super(AvgPool2d, self).__init__(kernel_size, stride, pad_mode)
- self.avg_pool = P.AvgPool(ksize=self.kernel_size,
- strides=self.stride,
- padding=self.pad_mode)
-
- def construct(self, x):
- return self.avg_pool(x)
-
-
- class AvgPool1d(_PoolNd):
- r"""
- Average pooling for temporal data.
-
- Applies a 1D average pooling over an input Tensor which can be regarded as a composition of 1D input planes.
-
- Typically the input is of shape :math:`(N_{in}, C_{in}, L_{in})`, AvgPool1d outputs
- regional average in the :math:`(L_{in})`-dimension. Given kernel size
- :math:`ks = l_{ker}` and stride :math:`s = s_0`, the operation is as follows.
-
- .. math::
- \text{output}(N_i, C_j, l) = \frac{1}{l_{ker}} \sum_{n=0}^{l_{ker}-1}
- \text{input}(N_i, C_j, s_0 \times l + n)
-
- Note:
- pad_mode for training only supports "same" and "valid".
-
- Args:
- kernel_size (int): The size of kernel window used to take the average value, Default: 1.
- stride (int): The distance of kernel moving, an int number that represents
- the width of movement is strides, Default: 1.
- pad_mode (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
- Default: "valid".
-
- - same: Adopts the way of completion. Output height and width will be the same as
- the input. Total number of padding will be calculated for horizontal and vertical
- direction and evenly distributed to top and bottom, left and right if possible.
- Otherwise, the last extra padding will be done from the bottom and the right side.
-
- - valid: Adopts the way of discarding. The possibly largest height and width of output
- will be return without padding. Extra pixels will be discarded.
-
-
- Inputs:
- - **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, L_{in})`.
-
- Outputs:
- Tensor of shape :math:`(N, C_{out}, L_{out})`.
-
- Examples:
- >>> pool = nn.AvgPool1d(kernel_size=6, strides=1)
- >>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
- >>> output = pool(x)
- >>> output.shape()
- (1, 3, 1)
- """
-
- def __init__(self,
- kernel_size=1,
- stride=1,
- pad_mode="valid"):
- super(AvgPool1d, self).__init__(kernel_size, stride, pad_mode)
- validator.check_value_type('kernel_size', kernel_size, [int], self.cls_name)
- validator.check_value_type('stride', stride, [int], self.cls_name)
- self.pad_mode = validator.check_string('pad_mode', pad_mode.upper(), ['VALID', 'SAME'], self.cls_name)
- validator.check_integer("kernel_size", kernel_size, 1, Rel.GE, self.cls_name)
- validator.check_integer("stride", stride, 1, Rel.GE, self.cls_name)
- self.kernel_size = (1, kernel_size)
- self.stride = (1, stride)
- self.avg_pool = P.AvgPool(ksize=self.kernel_size,
- strides=self.stride,
- padding=self.pad_mode)
- self.shape = F.shape
- self.reduce_mean = P.ReduceMean(keep_dims=True)
- self.slice = P.Slice()
- self.expand = P.ExpandDims()
-
- def construct(self, x):
- _shape_check(self.shape(x))
- batch, channel, width = self.shape(x)
- if width == self.kernel_size[1]:
- x = self.reduce_mean(x, 2)
- elif width - self.kernel_size[1] < self.stride[1]:
- x = self.slice(x, (0, 0, 0), (batch, channel, self.kernel_size[1]))
- x = self.reduce_mean(x, 2)
- else:
- x = self.expand(x, 2)
- x = self.avg_pool(x)
- return x
|