|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """cnnctc train"""
-
- import argparse
- import ast
-
- import mindspore
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.dataset import GeneratorDataset
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
- from mindspore.train.model import Model
- from mindspore.communication.management import init
- from mindspore.common import set_seed
-
- from src.config import Config_CNNCTC
- from src.callback import LossCallBack
- from src.dataset import ST_MJ_Generator_batch_fixed_length, ST_MJ_Generator_batch_fixed_length_para
- from src.cnn_ctc import CNNCTC_Model, ctc_loss, WithLossCell
-
- set_seed(1)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False,
- save_graphs_path=".", enable_auto_mixed_precision=False)
-
-
- def dataset_creator(run_distribute):
- if run_distribute:
- st_dataset = ST_MJ_Generator_batch_fixed_length_para()
- else:
- st_dataset = ST_MJ_Generator_batch_fixed_length()
-
- ds = GeneratorDataset(st_dataset,
- ['img', 'label_indices', 'text', 'sequence_length'],
- num_parallel_workers=8)
-
- return ds
-
-
- def train(args_opt, config):
- if args_opt.run_distribute:
- init()
- context.set_auto_parallel_context(parallel_mode="data_parallel")
-
- ds = dataset_creator(args_opt.run_distribute)
-
- net = CNNCTC_Model(config.NUM_CLASS, config.HIDDEN_SIZE, config.FINAL_FEATURE_WIDTH)
- net.set_train(True)
-
- if config.CKPT_PATH != '':
- param_dict = load_checkpoint(config.CKPT_PATH)
- load_param_into_net(net, param_dict)
- print('parameters loaded!')
- else:
- print('train from scratch...')
-
- criterion = ctc_loss()
- opt = mindspore.nn.RMSProp(params=net.trainable_params(), centered=True, learning_rate=config.LR_PARA,
- momentum=config.MOMENTUM, loss_scale=config.LOSS_SCALE)
-
- net = WithLossCell(net, criterion)
- loss_scale_manager = mindspore.train.loss_scale_manager.FixedLossScaleManager(config.LOSS_SCALE, False)
- model = Model(net, optimizer=opt, loss_scale_manager=loss_scale_manager, amp_level="O2")
-
- callback = LossCallBack()
- config_ck = CheckpointConfig(save_checkpoint_steps=config.SAVE_CKPT_PER_N_STEP,
- keep_checkpoint_max=config.KEEP_CKPT_MAX_NUM)
- ckpoint_cb = ModelCheckpoint(prefix="CNNCTC", config=config_ck, directory=config.SAVE_PATH)
-
- if args_opt.run_distribute:
- if args_opt.device_id == 0:
- model.train(config.TRAIN_EPOCHS, ds, callbacks=[callback, ckpoint_cb], dataset_sink_mode=False)
- else:
- model.train(config.TRAIN_EPOCHS, ds, callbacks=[callback], dataset_sink_mode=False)
- else:
- model.train(config.TRAIN_EPOCHS, ds, callbacks=[callback, ckpoint_cb], dataset_sink_mode=False)
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='CNNCTC arg')
- parser.add_argument('--device_id', type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--ckpt_path", type=str, default="", help="Pretrain file path.")
- parser.add_argument("--run_distribute", type=ast.literal_eval, default=False,
- help="Run distribute, default is false.")
- args_cfg = parser.parse_args()
-
- cfg = Config_CNNCTC()
- if args_cfg.ckpt_path != "":
- cfg.CKPT_PATH = args_cfg.ckpt_path
- train(args_cfg, cfg)
|