|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # less required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Evaluation for yolo_v3"""
- import os
- import argparse
- import time
- from mindspore import context, Tensor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.model_zoo.yolov3 import yolov3_resnet18, YoloWithEval
- from dataset import create_yolo_dataset, data_to_mindrecord_byte_image
- from config import ConfigYOLOV3ResNet18
- from util import metrics
-
- def yolo_eval(dataset_path, ckpt_path):
- """Yolov3 evaluation."""
-
- ds = create_yolo_dataset(dataset_path, is_training=False)
- config = ConfigYOLOV3ResNet18()
- net = yolov3_resnet18(config)
- eval_net = YoloWithEval(net, config)
- print("Load Checkpoint!")
- param_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, param_dict)
-
-
- eval_net.set_train(False)
- i = 1.
- total = ds.get_dataset_size()
- start = time.time()
- pred_data = []
- print("\n========================================\n")
- print("total images num: ", total)
- print("Processing, please wait a moment.")
- for data in ds.create_dict_iterator():
- img_np = data['image']
- image_shape = data['image_shape']
- annotation = data['annotation']
-
- eval_net.set_train(False)
- output = eval_net(Tensor(img_np), Tensor(image_shape))
- for batch_idx in range(img_np.shape[0]):
- pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
- "box_scores": output[1].asnumpy()[batch_idx],
- "annotation": annotation})
- percent = round(i / total * 100, 2)
-
- print(' %s [%d/%d]' % (str(percent) + '%', i, total), end='\r')
- i += 1
- print(' %s [%d/%d] cost %d ms' % (str(100.0) + '%', total, total, int((time.time() - start) * 1000)), end='\n')
-
- precisions, recalls = metrics(pred_data)
- print("\n========================================\n")
- for i in range(config.num_classes):
- print("class {} precision is {:.2f}%, recall is {:.2f}%".format(i, precisions[i] * 100, recalls[i] * 100))
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Yolov3 evaluation')
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--mindrecord_dir", type=str, default="./Mindrecord_eval",
- help="Mindrecord directory. If the mindrecord_dir is empty, it wil generate mindrecord file by"
- "image_dir and anno_path. Note if mindrecord_dir isn't empty, it will use mindrecord_dir "
- "rather than image_dir and anno_path. Default is ./Mindrecord_eval")
- parser.add_argument("--image_dir", type=str, default="", help="Dataset directory, "
- "the absolute image path is joined by the image_dir "
- "and the relative path in anno_path.")
- parser.add_argument("--anno_path", type=str, default="", help="Annotation path.")
- parser.add_argument("--ckpt_path", type=str, required=True, help="Checkpoint path.")
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
- context.set_context(enable_task_sink=True, enable_loop_sink=True, enable_mem_reuse=True,
- enable_auto_mixed_precision=False)
-
- # It will generate mindrecord file in args_opt.mindrecord_dir,
- # and the file name is yolo.mindrecord0, 1, ... file_num.
- if not os.path.isdir(args_opt.mindrecord_dir):
- os.makedirs(args_opt.mindrecord_dir)
-
- prefix = "yolo.mindrecord"
- mindrecord_file = os.path.join(args_opt.mindrecord_dir, prefix + "0")
- if not os.path.exists(mindrecord_file):
- if os.path.isdir(args_opt.image_dir) and os.path.exists(args_opt.anno_path):
- print("Create Mindrecord")
- data_to_mindrecord_byte_image(args_opt.image_dir,
- args_opt.anno_path,
- args_opt.mindrecord_dir,
- prefix=prefix,
- file_num=8)
- print("Create Mindrecord Done, at {}".format(args_opt.mindrecord_dir))
- else:
- print("image_dir or anno_path not exits")
- print("Start Eval!")
- yolo_eval(mindrecord_file, args_opt.ckpt_path)
|