|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # less required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import os
- import argparse
- import logging
- import numpy as np
- import mindspore
- import mindspore.nn as nn
- import mindspore.ops.operations as F
- from mindspore import context, Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.nn.loss.loss import _Loss
-
- from src.data_loader import create_dataset
- from src.unet import UNet
- from src.config import cfg_unet
-
- from scipy.special import softmax
-
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
-
-
-
-
- class CrossEntropyWithLogits(_Loss):
- def __init__(self):
- super(CrossEntropyWithLogits, self).__init__()
- self.transpose_fn = F.Transpose()
- self.reshape_fn = F.Reshape()
- self.softmax_cross_entropy_loss = nn.SoftmaxCrossEntropyWithLogits()
- self.cast = F.Cast()
- def construct(self, logits, label):
- # NCHW->NHWC
- logits = self.transpose_fn(logits, (0, 2, 3, 1))
- logits = self.cast(logits, mindspore.float32)
- label = self.transpose_fn(label, (0, 2, 3, 1))
-
- loss = self.reduce_mean(self.softmax_cross_entropy_loss(self.reshape_fn(logits, (-1, 2)),
- self.reshape_fn(label, (-1, 2))))
- return self.get_loss(loss)
-
-
- class dice_coeff(nn.Metric):
- def __init__(self):
- super(dice_coeff, self).__init__()
- self.clear()
- def clear(self):
- self._dice_coeff_sum = 0
- self._samples_num = 0
-
- def update(self, *inputs):
- if len(inputs) != 2:
- raise ValueError('Mean dice coeffcient need 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
-
- y_pred = self._convert_data(inputs[0])
- y = self._convert_data(inputs[1])
- self._samples_num += y.shape[0]
- y_pred = y_pred.transpose(0, 2, 3, 1)
- y = y.transpose(0, 2, 3, 1)
- y_pred = softmax(y_pred, axis=3)
-
- inter = np.dot(y_pred.flatten(), y.flatten())
- union = np.dot(y_pred.flatten(), y_pred.flatten()) + np.dot(y.flatten(), y.flatten())
-
- single_dice_coeff = 2*float(inter)/float(union+1e-6)
- print("single dice coeff is:", single_dice_coeff)
- self._dice_coeff_sum += single_dice_coeff
-
- def eval(self):
- if self._samples_num == 0:
- raise RuntimeError('Total samples num must not be 0.')
- return self._dice_coeff_sum / float(self._samples_num)
-
-
- def test_net(data_dir,
- ckpt_path,
- cross_valid_ind=1,
- cfg=None):
-
- net = UNet(n_channels=cfg['num_channels'], n_classes=cfg['num_classes'])
- param_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, param_dict)
-
- criterion = CrossEntropyWithLogits()
- _, valid_dataset = create_dataset(data_dir, 1, 1, False, cross_valid_ind, False)
- model = Model(net, loss_fn=criterion, metrics={"dice_coeff": dice_coeff()})
-
- print("============== Starting Evaluating ============")
- dice_score = model.eval(valid_dataset, dataset_sink_mode=False)
- print("============== Cross valid dice coeff is:", dice_score)
-
-
- def get_args():
- parser = argparse.ArgumentParser(description='Test the UNet on images and target masks',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('-d', '--data_url', dest='data_url', type=str, default='data/',
- help='data directory')
- parser.add_argument('-p', '--ckpt_path', dest='ckpt_path', type=str, default='ckpt_unet_medical_adam-1_600.ckpt',
- help='checkpoint path')
-
- return parser.parse_args()
-
-
- if __name__ == '__main__':
- logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
- args = get_args()
- print("Testing setting:", args)
- test_net(data_dir=args.data_url,
- ckpt_path=args.ckpt_path,
- cross_valid_ind=cfg_unet['cross_valid_ind'],
- cfg=cfg_unet)
|