|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test cases for gamma distribution"""
-
- import pytest
- import numpy as np
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.nn.probability.distribution as msd
- from mindspore import dtype as ms
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
-
-
- class GammaMean(nn.Cell):
- def __init__(self, concentration, rate, seed=10, dtype=ms.float32, name='Gamma'):
- super().__init__()
- self.b = msd.Gamma(concentration, rate, seed, dtype, name)
-
- def construct(self):
- out1 = self.b.mean()
- out2 = self.b.mode()
- out3 = self.b.var()
- out4 = self.b.entropy()
- out5 = self.b.sd()
- return out1, out2, out3, out4, out5
-
-
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.env_onecard
- def test_probability_gamma_mean_cdoncentration_rate_rand_2_ndarray():
- concentration = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
- rate = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
- net = GammaMean(concentration, rate)
- net()
|