|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Evaluation process"""
-
- import os
-
- from mindspore import nn
- from mindspore import context
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.train.serialization import load_checkpoint
-
- from src.moxing_adapter import moxing_wrapper
- from src.config import config
- from src.dataset import create_lenet_dataset
- from src.foo import LeNet5
-
-
- @moxing_wrapper()
- def eval_lenet5():
- """Evaluation of lenet5"""
- context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
-
- network = LeNet5(config.num_classes)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), config.lr, config.momentum)
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
-
- print("============== Starting Testing ==============")
- load_checkpoint(config.ckpt_path, network)
- ds_eval = create_lenet_dataset(os.path.join(config.data_path, "test"), config.batch_size, 1)
- if ds_eval.get_dataset_size() == 0:
- raise ValueError("Please check dataset size > 0 and batch_size <= dataset size")
-
- acc = model.eval(ds_eval)
- print("============== {} ==============".format(acc))
-
-
- if __name__ == '__main__':
- eval_lenet5()
|