# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from mindspore.ops import composite as C import mindspore.context as context from mindspore import Tensor context.set_context(device_target='GPU') @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_multinomial(): x0 = Tensor(np.array([0.9, 0.2]).astype(np.float32)) x1 = Tensor(np.array([[0.9, 0.2], [0.9, 0.2]]).astype(np.float32)) out0 = C.multinomial(x0, 1, True) out1 = C.multinomial(x0, 2, True) out2 = C.multinomial(x1, 6, True) assert out0.asnumpy().shape == (1,) assert out1.asnumpy().shape == (2,) assert out2.asnumpy().shape == (2, 6)