# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore.common.tensor import Tensor from mindspore.nn import Cell from mindspore.ops import operations as P class NetEqual(Cell): def __init__(self): super(NetEqual, self).__init__() self.Equal = P.Equal() def construct(self, x, y): return self.Equal(x, y) class NetNotEqual(Cell): def __init__(self): super(NetNotEqual, self).__init__() self.NotEqual = P.NotEqual() def construct(self, x, y): return self.NotEqual(x, y) class NetGreaterEqual(Cell): def __init__(self): super(NetGreaterEqual, self).__init__() self.GreaterEqual = P.GreaterEqual() def construct(self, x, y): return self.GreaterEqual(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_equal(): x0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32) x0 = Tensor(x0_np) y0_np = np.arange(24).reshape((4, 3, 2)).astype(np.float32) y0 = Tensor(y0_np) expect0 = np.equal(x0_np, y0_np) x1_np = np.array([0, 1, 3]).astype(np.float32) x1 = Tensor(x1_np) y1_np = np.array([0, 1, -3]).astype(np.float32) y1 = Tensor(y1_np) expect1 = np.equal(x1_np, y1_np) x2_np = np.array([0, 1, 3]).astype(np.int32) x2 = Tensor(x2_np) y2_np = np.array([0, 1, -3]).astype(np.int32) y2 = Tensor(y2_np) expect2 = np.equal(x2_np, y2_np) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") equal = NetEqual() output0 = equal(x0, y0) assert np.all(output0.asnumpy() == expect0) assert output0.shape == expect0.shape output1 = equal(x1, y1) assert np.all(output1.asnumpy() == expect1) assert output1.shape == expect1.shape output2 = equal(x2, y2) assert np.all(output2.asnumpy() == expect2) assert output2.shape == expect2.shape context.set_context(mode=context.GRAPH_MODE, device_target="GPU") equal = NetEqual() output0 = equal(x0, y0) assert np.all(output0.asnumpy() == expect0) assert output0.shape == expect0.shape output1 = equal(x1, y1) assert np.all(output1.asnumpy() == expect1) assert output1.shape == expect1.shape output2 = equal(x2, y2) assert np.all(output2.asnumpy() == expect2) assert output2.shape == expect2.shape @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_notequal(): x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) expect0 = np.array([[True, True], [False, True]]) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") notequal = NetNotEqual() output0 = notequal(x0, y0) assert np.all(output0.asnumpy() == expect0) assert output0.shape == expect0.shape context.set_context(mode=context.GRAPH_MODE, device_target="GPU") notequal = NetNotEqual() output0 = notequal(x0, y0) assert np.all(output0.asnumpy() == expect0) assert output0.shape == expect0.shape @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_greaterqual(): x0 = Tensor(np.array([[1.2, 1], [1, 0]]).astype(np.float32)) y0 = Tensor(np.array([[1, 2]]).astype(np.float32)) expect0 = np.array([[True, False], [True, False]]) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") gequal = NetGreaterEqual() output0 = gequal(x0, y0) assert np.all(output0.asnumpy() == expect0) assert output0.shape == expect0.shape context.set_context(mode=context.GRAPH_MODE, device_target="GPU") gequal = NetGreaterEqual() output0 = gequal(x0, y0) assert np.all(output0.asnumpy() == expect0) assert output0.shape == expect0.shape