# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ create train or eval dataset. """ import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.vision.py_transforms as P import mindspore.dataset.transforms.c_transforms as C2 from mindspore.dataset.transforms.vision import Inter def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch_size=100, model='ghsotnet'): """ create a train or eval dataset Args: dataset_path(string): the path of dataset. do_train(bool): whether dataset is used for train or eval. repeat_num(int): the repeat times of dataset. Default: 1 batch_size(int): the batch size of dataset. Default: 32 Returns: dataset """ if platform == "Ascend": rank_size = int(os.getenv("RANK_SIZE")) rank_id = int(os.getenv("RANK_ID")) if rank_size == 1: ds = de.MindDataset( dataset_path, num_parallel_workers=8, shuffle=True) else: ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True, num_shards=rank_size, shard_id=rank_id) elif platform == "GPU": if do_train: from mindspore.communication.management import get_rank, get_group_size ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True, num_shards=get_group_size(), shard_id=get_rank()) else: ds = de.MindDataset( dataset_path, num_parallel_workers=8, shuffle=True) else: raise ValueError("Unsupport platform.") resize_height = config.image_height buffer_size = 1000 # define map operations resize_crop_op = C.RandomCropDecodeResize( resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333)) horizontal_flip_op = C.RandomHorizontalFlip(prob=0.5) color_op = C.RandomColorAdjust( brightness=0.4, contrast=0.4, saturation=0.4) rescale_op = C.Rescale(1/255.0, 0) normalize_op = C.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) change_swap_op = C.HWC2CHW() # define python operations decode_p = P.Decode() if model == 'ghostnet-600': s = 274 c = 240 else: s = 256 c = 224 resize_p = P.Resize(s, interpolation=Inter.BICUBIC) center_crop_p = P.CenterCrop(c) totensor = P.ToTensor() normalize_p = P.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) composeop = P.ComposeOp( [decode_p, resize_p, center_crop_p, totensor, normalize_p]) if do_train: trans = [resize_crop_op, horizontal_flip_op, color_op, rescale_op, normalize_op, change_swap_op] else: trans = composeop() type_cast_op = C2.TypeCast(mstype.int32) ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8) ds = ds.map(input_columns="label_list", operations=type_cast_op, num_parallel_workers=8) # apply shuffle operations ds = ds.shuffle(buffer_size=buffer_size) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) # apply dataset repeat operation ds = ds.repeat(repeat_num) return ds