# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ modify GreedyDecoder to adapt to MindSpore """ import numpy as np from deepspeech_pytorch.decoder import GreedyDecoder class MSGreedyDecoder(GreedyDecoder): """ GreedyDecoder used for MindSpore """ def process_string(self, sequence, size, remove_repetitions=False): """ process string """ string = '' offsets = [] for i in range(size): char = self.int_to_char[sequence[i].item()] if char != self.int_to_char[self.blank_index]: if remove_repetitions and i != 0 and char == self.int_to_char[sequence[i - 1].item()]: pass elif char == self.labels[self.space_index]: string += ' ' offsets.append(i) else: string = string + char offsets.append(i) return string, offsets def decode(self, probs, sizes=None): probs = probs.asnumpy() sizes = sizes.asnumpy() max_probs = np.argmax(probs, axis=-1) strings, offsets = self.convert_to_strings(max_probs, sizes, remove_repetitions=True, return_offsets=True) return strings, offsets