# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing RandomRotation op in DE """ import matplotlib.pyplot as plt import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.vision.py_transforms as vision from mindspore import log as logger DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def visualize(image_1, image_2): """ visualizes the image using RandomErasing and Cutout """ plt.subplot(141) plt.imshow(image_1) plt.title("RandomErasing") plt.subplot(142) plt.imshow(image_2) plt.title("Cutout") plt.subplot(143) plt.imshow(image_1 - image_2) plt.title("Difference image") plt.show() def test_random_erasing_op(): """ Test RandomErasing and Cutout """ logger.info("test_random_erasing") # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms_1 = [ vision.Decode(), vision.ToTensor(), vision.RandomErasing(value='random') ] transform_1 = vision.ComposeOp(transforms_1) data1 = data1.map(input_columns=["image"], operations=transform_1()) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms_2 = [ vision.Decode(), vision.ToTensor(), vision.Cutout(80) ] transform_2 = vision.ComposeOp(transforms_2) data2 = data2.map(input_columns=["image"], operations=transform_2()) num_iter = 0 for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): num_iter += 1 image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8) image_2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) logger.info("shape of image_1: {}".format(image_1.shape)) logger.info("shape of image_2: {}".format(image_2.shape)) logger.info("dtype of image_1: {}".format(image_1.dtype)) logger.info("dtype of image_2: {}".format(image_2.dtype)) # visualize(image_1, image_2) if __name__ == "__main__": test_random_erasing_op()