# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing BertTokenizer op in DE """ import numpy as np import mindspore.dataset as ds from mindspore import log as logger import mindspore.dataset.text as nlp BERT_TOKENIZER_FILE = "../data/dataset/testTokenizerData/bert_tokenizer.txt" vocab_bert = [ "床", "前", "明", "月", "光", "疑", "是", "地", "上", "霜", "举", "头", "望", "低", "思", "故", "乡", "繁", "體", "字", "嘿", "哈", "大", "笑", "嘻", "i", "am", "mak", "make", "small", "mistake", "##s", "during", "work", "##ing", "hour", "😀", "😃", "😄", "😁", "+", "/", "-", "=", "12", "28", "40", "16", " ", "I", "[CLS]", "[SEP]", "[UNK]", "[PAD]", "[MASK]" ] pad = '' test_paras = [ # test chinese text dict( first=1, last=4, expect_str=[['床', '前', '明', '月', '光'], ['疑', '是', '地', '上', '霜'], ['举', '头', '望', '明', '月'], ['低', '头', '思', '故', '乡']], vocab_list=vocab_bert ), # test english text dict( first=5, last=5, expect_str=[['i', 'am', 'mak', '##ing', 'small', 'mistake', '##s', 'during', 'work', '##ing', 'hour', '##s']], lower_case=True, vocab_list=vocab_bert ), dict( first=5, last=5, expect_str=[['I', "am", 'mak', '##ing', 'small', 'mistake', '##s', 'during', 'work', '##ing', 'hour', '##s']], lower_case=False, vocab_list=vocab_bert ), # test emoji tokens dict( first=6, last=7, expect_str=[ ['😀', '嘿', '嘿', '😃', '哈', '哈', '😄', '大', '笑', '😁', '嘻', '嘻'], ['繁', '體', '字']], normalization_form=nlp.utils.NormalizeForm.NFKC, vocab_list=vocab_bert ), # test preserved tokens dict( first=8, last=12, expect_str=[ ['[UNK]', '[CLS]'], ['[UNK]', '[SEP]'], ['[UNK]', '[UNK]'], ['[UNK]', '[PAD]'], ['[UNK]', '[MASK]'], ], lower_case=False, vocab_list=vocab_bert, preserve_unused_token=True, ), # test special symbol dict( first=13, last=13, expect_str=[['12', '+', '/', '-', '28', '=', '40', '/', '-', '16']], preserve_unused_token=True, vocab_list=vocab_bert ), # test non-default parms dict( first=8, last=8, expect_str=[['[UNK]', ' ', '[CLS]']], lower_case=False, vocab_list=vocab_bert, preserve_unused_token=True, keep_whitespace=True ), dict( first=8, last=8, expect_str=[['unused', ' ', '[CLS]']], lower_case=False, vocab_list=vocab_bert, preserve_unused_token=True, keep_whitespace=True, unknown_token='' ), dict( first=8, last=8, expect_str=[['unused', ' ', '[', 'CLS', ']']], lower_case=False, vocab_list=vocab_bert, preserve_unused_token=False, keep_whitespace=True, unknown_token='' ), ] def check_bert_tokenizer(first, last, expect_str, vocab_list, suffix_indicator='##', max_bytes_per_token=100, unknown_token='[UNK]', lower_case=False, keep_whitespace=False, normalization_form=nlp.utils.NormalizeForm.NONE, preserve_unused_token=False): dataset = ds.TextFileDataset(BERT_TOKENIZER_FILE, shuffle=False) if first > 1: dataset = dataset.skip(first - 1) if last >= first: dataset = dataset.take(last - first + 1) vocab = nlp.Vocab.from_list(vocab_list) tokenizer_op = nlp.BertTokenizer( vocab=vocab, suffix_indicator=suffix_indicator, max_bytes_per_token=max_bytes_per_token, unknown_token=unknown_token, lower_case=lower_case, keep_whitespace=keep_whitespace, normalization_form=normalization_form, preserve_unused_token=preserve_unused_token) dataset = dataset.map(operations=tokenizer_op) count = 0 for i in dataset.create_dict_iterator(): text = nlp.to_str(i['text']) logger.info("Out:", text) logger.info("Exp:", expect_str[count]) np.testing.assert_array_equal(text, expect_str[count]) count = count + 1 def test_bert_tokenizer(): """ Test WordpieceTokenizer """ for paras in test_paras: check_bert_tokenizer(**paras) if __name__ == '__main__': test_bert_tokenizer()