# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation api.""" import argparse import pickle import numpy as np from mindspore.common import dtype as mstype from config import TransformerConfig from src.transformer import infer from src.utils import ngram_ppl from src.utils import Dictionary from src.utils import rouge parser = argparse.ArgumentParser(description='Evaluation MASS.') parser.add_argument("--config", type=str, required=True, help="Model config json file path.") parser.add_argument("--vocab", type=str, required=True, help="Vocabulary to use.") parser.add_argument("--output", type=str, required=True, help="Result file path.") def get_config(config): config = TransformerConfig.from_json_file(config) config.compute_type = mstype.float16 config.dtype = mstype.float32 return config if __name__ == '__main__': args, _ = parser.parse_known_args() vocab = Dictionary.load_from_persisted_dict(args.vocab) _config = get_config(args.config) result = infer(_config) with open(args.output, "wb") as f: pickle.dump(result, f, 1) ppl_score = 0. preds = [] tgts = [] _count = 0 for sample in result: sentence_prob = np.array(sample['prediction_prob'], dtype=np.float32) sentence_prob = sentence_prob[:, 1:] _ppl = [] for path in sentence_prob: _ppl.append(ngram_ppl(path, log_softmax=True)) ppl = np.min(_ppl) preds.append(' '.join([vocab[t] for t in sample['prediction']])) tgts.append(' '.join([vocab[t] for t in sample['target']])) print(f" | source: {' '.join([vocab[t] for t in sample['source']])}") print(f" | target: {tgts[-1]}") print(f" | prediction: {preds[-1]}") print(f" | ppl: {ppl}.") if np.isinf(ppl): continue ppl_score += ppl _count += 1 print(f" | PPL={ppl_score / _count}.") rouge(preds, tgts)