# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """GoogleNet""" import mindspore.nn as nn from mindspore.common.initializer import TruncatedNormal from mindspore.ops import operations as P def weight_variable(): """Weight variable.""" return TruncatedNormal(0.02) class Conv2dBlock(nn.Cell): """ Basic convolutional block Args: in_channles (int): Input channel. out_channels (int): Output channel. kernel_size (int): Input kernel size. Default: 1 stride (int): Stride size for the first convolutional layer. Default: 1. padding (int): Implicit paddings on both sides of the input. Default: 0. pad_mode (str): Padding mode. Optional values are "same", "valid", "pad". Default: "same". Returns: Tensor, output tensor. """ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, pad_mode="same"): super(Conv2dBlock, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, pad_mode=pad_mode, weight_init=weight_variable()) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) self.relu = nn.ReLU() def construct(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x class Inception(nn.Cell): """ Inception Block """ def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes): super(Inception, self).__init__() self.b1 = Conv2dBlock(in_channels, n1x1, kernel_size=1) self.b2 = nn.SequentialCell([Conv2dBlock(in_channels, n3x3red, kernel_size=1), Conv2dBlock(n3x3red, n3x3, kernel_size=3, padding=0)]) self.b3 = nn.SequentialCell([Conv2dBlock(in_channels, n5x5red, kernel_size=1), Conv2dBlock(n5x5red, n5x5, kernel_size=3, padding=0)]) self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same") self.b4 = Conv2dBlock(in_channels, pool_planes, kernel_size=1) self.concat = P.Concat(axis=1) def construct(self, x): branch1 = self.b1(x) branch2 = self.b2(x) branch3 = self.b3(x) cell, argmax = self.maxpool(x) branch4 = self.b4(cell) _ = argmax return self.concat((branch1, branch2, branch3, branch4)) class GoogleNet(nn.Cell): """ Googlenet architecture """ def __init__(self, num_classes): super(GoogleNet, self).__init__() self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0) self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same") self.conv2 = Conv2dBlock(64, 64, kernel_size=1) self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0) self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same") self.block3a = Inception(192, 64, 96, 128, 16, 32, 32) self.block3b = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same") self.block4a = Inception(480, 192, 96, 208, 16, 48, 64) self.block4b = Inception(512, 160, 112, 224, 24, 64, 64) self.block4c = Inception(512, 128, 128, 256, 24, 64, 64) self.block4d = Inception(512, 112, 144, 288, 32, 64, 64) self.block4e = Inception(528, 256, 160, 320, 32, 128, 128) self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same") self.block5a = Inception(832, 256, 160, 320, 32, 128, 128) self.block5b = Inception(832, 384, 192, 384, 48, 128, 128) self.mean = P.ReduceMean(keep_dims=True) self.dropout = nn.Dropout(keep_prob=0.8) self.flatten = nn.Flatten() self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(), bias_init=weight_variable()) def construct(self, x): x = self.conv1(x) x, argmax = self.maxpool1(x) x = self.conv2(x) x = self.conv3(x) x, argmax = self.maxpool2(x) x = self.block3a(x) x = self.block3b(x) x, argmax = self.maxpool3(x) x = self.block4a(x) x = self.block4b(x) x = self.block4c(x) x = self.block4d(x) x = self.block4e(x) x, argmax = self.maxpool4(x) x = self.block5a(x) x = self.block5b(x) x = self.mean(x, (2, 3)) x = self.flatten(x) x = self.classifier(x) _ = argmax return x