# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class OpNetWrapper(nn.Cell): def __init__(self, op): super(OpNetWrapper, self).__init__() self.op = op def construct(self, *inputs): return self.op(*inputs) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out1_axis0(): op = P.Split(0, 1) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(24).astype(np.int32).reshape((2, 2, 6))) outputs = op_wrapper(input_x) print(outputs) assert outputs[0].shape == (2, 2, 6) assert np.allclose(outputs[0].asnumpy()[0, 0, :], [0, 1, 2, 3, 4, 5]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out2_axis2(): op = P.Split(2, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(24).astype(np.int32).reshape((2, 2, 6))) outputs = op_wrapper(input_x) print(outputs) assert outputs[0].shape == (2, 2, 3) assert outputs[1].shape == (2, 2, 3) assert np.allclose(outputs[0].asnumpy()[0, 0, :], [0, 1, 2]) assert np.allclose(outputs[1].asnumpy()[0, 0, :], [3, 4, 5]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out2_axis1neg(): op = P.Split(-1, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(24).astype(np.float32).reshape((2, 2, 6))) outputs = op_wrapper(input_x) print(outputs) assert np.allclose(outputs[0].asnumpy()[0, :, :], [[0., 1., 2.], [6., 7., 8.]]) assert np.allclose(outputs[1].asnumpy()[0, :, :], [[3., 4., 5.], [9., 10., 11.]]) if __name__ == '__main__': test_out1_axis0() test_out2_axis2() test_out2_axis1neg()